Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
RNA ; 28(5): 756-765, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35217597

RESUMEN

Poly(A) tail length is regulated in both the nucleus and cytoplasm. One factor that controls polyadenylation in the cytoplasm is CPEB1, an RNA binding protein that associates with specific mRNA 3'UTR sequences to tether enzymes that add and remove poly(A). Two of these enzymes, the noncanonical poly(A) polymerases GLD2 (TENT2, PAPD4, Wispy) and GLD4 (TENT4B, PAPD5, TRF4, TUT3), interact with CPEB1 to extend poly(A). To identify additional RNA binding proteins that might anchor GLD4 to RNA, we expressed double tagged GLD4 in U87MG cells, which was used for sequential immunoprecipitation and elution followed by mass spectrometry. We identified several RNA binding proteins that coprecipitated with GLD4, among which was FMRP. To assess whether FMRP regulates polyadenylation, we performed TAIL-seq from WT and FMRP-deficient HEK293 cells. Surprisingly, loss of FMRP resulted in an overall increase in poly(A), which was also observed for several specific mRNAs. Conversely, loss of CPEB1 elicited an expected decrease in poly(A), which was examined in cultured neurons. We also examined polyadenylation in wild type (WT) and FMRP-deficient mouse brain cortex by direct RNA nanopore sequencing, which identified RNAs with both increased and decreased poly(A). Our data show that FMRP has a role in mediating poly(A) tail length, which adds to its repertoire of RNA regulation.


Asunto(s)
Poliadenilación , Factores de Escisión y Poliadenilación de ARNm , Animales , Células HEK293 , Humanos , Ratones , Poli A/genética , Poli A/metabolismo , Polinucleotido Adenililtransferasa/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Factores de Transcripción/genética , Factores de Escisión y Poliadenilación de ARNm/genética , Factores de Escisión y Poliadenilación de ARNm/metabolismo
2.
Nucleic Acids Res ; 45(11): 6793-6804, 2017 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-28383716

RESUMEN

Regulation of gene expression at the level of cytoplasmic polyadenylation is important for many biological phenomena including cell cycle progression, mitochondrial respiration, and learning and memory. GLD4 is one of the non-canonical poly(A) polymerases that regulates cytoplasmic polyadenylation-induced translation, but its target mRNAs and role in cellular physiology is not well known. To assess the full panoply of mRNAs whose polyadenylation is controlled by GLD4, we performed an unbiased whole genome-wide screen using poy(U) chromatography and thermal elution. We identified hundreds of mRNAs regulated by GLD4, several of which are involved in carbohydrate metabolism including GLUT1, a major glucose transporter. Depletion of GLD4 not only reduced GLUT1 poly(A) tail length, but also GLUT1 protein. GLD4-mediated translational control of GLUT1 mRNA is dependent of an RNA binding protein, CPEB1, and its binding elements in the 3΄ UTR. Through regulating GLUT1 level, GLD4 affects glucose uptake into cells and lactate levels. Moreover, GLD4 depletion impairs glucose deprivation-induced GLUT1 up-regulation. In addition, we found that GLD4 affects glucose-dependent cellular phenotypes such as migration and invasion in glioblastoma cells. Our observations delineate a novel post-transcriptional regulatory network involving carbohydrate metabolism and glucose homeostasis mediated by GLD4.


Asunto(s)
Metabolismo de los Hidratos de Carbono , Poliadenilación , ARN Nucleotidiltransferasas/fisiología , Secuencia de Bases , Línea Celular Tumoral , Movimiento Celular , Citoplasma/metabolismo , Regulación de la Expresión Génica , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Células HEK293 , Homeostasis , Humanos , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Factores de Transcripción/fisiología , Factores de Escisión y Poliadenilación de ARNm/fisiología
3.
Proc Natl Acad Sci U S A ; 112(4): 1041-6, 2015 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-25583496

RESUMEN

Eukaryotic translation initiation commences at the initiation codon near the 5' end of mRNA by a 40S ribosomal subunit, and the recruitment of a 40S ribosome to an mRNA is facilitated by translation initiation factors interacting with the m(7)G cap and/or poly(A) tail. The 40S ribosome recruited to an mRNA is then transferred to the AUG initiation codon with the help of translation initiation factors. To understand the mechanism by which the ribosome finds an initiation codon, we investigated the role of eIF4G in finding the translational initiation codon. An artificial polypeptide eIF4G fused with MS2 was localized downstream of the reporter gene through MS2-binding sites inserted in the 3' UTR of the mRNA. Translation of the reporter was greatly enhanced by the eIF4G-MS2 fusion protein regardless of the presence of a cap structure. Moreover, eIF4G-MS2 tethered at the 3' UTR enhanced translation of the second cistron of a dicistronic mRNA. The encephalomyocarditis virus internal ribosome entry site, a natural translational-enhancing element facilitating translation through an interaction with eIF4G, positioned downstream of a reporter gene, also enhanced translation of the upstream gene in a cap-independent manner. Finally, we mathematically modeled the effect of distance between the cap structure and initiation codon on the translation efficiency of mRNAs. The most plausible explanation for translational enhancement by the translational-enhancing sites is recognition of the initiation codon by the ribosome bound to the ribosome-recruiting sites through "RNA looping." The RNA looping hypothesis provides a logical explanation for augmentation of translation by enhancing elements located upstream and/or downstream of a protein-coding region.


Asunto(s)
Regiones no Traducidas 3'/fisiología , Codón Iniciador/metabolismo , Conformación de Ácido Nucleico , Iniciación de la Cadena Peptídica Traduccional/fisiología , Caperuzas de ARN/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Codón Iniciador/genética , Genes Reporteros , Células HEK293 , Humanos , Caperuzas de ARN/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/genética
4.
RNA Biol ; 13(1): 1-5, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26515582

RESUMEN

The 40S ribosomal subunit cannot directly recognize the start codon of eukaryotic mRNAs. Instead, it recognizes the start codon after its association with the 5'-cap structure via translation initiation factors. Base-by-base inspection of the 5'UTR by a scanning ribosome is the generally accepted hypothesis of start codon selection. As part of an effort to confirm the underlying mechanism of start codon selection by the 40S ribosome, we investigated the role of eIF4G, which participates in the recruitment of 40S ribosomes to various translation enhancers, such as 5'-cap structure, poly(A) tail, and several internal ribosome entry sites. We found that an artificial translation factor composed of recombinant eIF4G fused with MS2 greatly enhanced translation of an upstream reporter gene when it was tethered to the 3'UTR. These data suggest that the 40S ribosome recruited to a translation enhancer can find the start codon by looping of the intervening RNA segment. The 'RNA-looping' hypothesis of translation start codon recognition was further supported by an analysis of the effect of 5'UTR length on translation efficiency and the mathematically predicted probability of RNA-loop-mediated interactions between the start codon and the 40S ribosome associated at the 5'-end.


Asunto(s)
Biosíntesis de Proteínas , Caperuzas de ARN/metabolismo , ARN Mensajero/metabolismo , Codón Iniciador , Factor 4G Eucariótico de Iniciación/genética , Factor 4G Eucariótico de Iniciación/metabolismo , Sitios Internos de Entrada al Ribosoma , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo
5.
Nucleic Acids Res ; 42(4): 2697-707, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24293655

RESUMEN

When bound to the 3' poly(A) tail of mRNA, poly(A)-binding protein (PABP) modulates mRNA translation and stability through its association with various proteins. By visualizing individual PABP molecules in real time, we found that PABP, containing four RNA recognition motifs (RRMs), adopts a conformation on poly(A) binding in which RRM1 is in proximity to RRM4. This conformational change is due to the bending of the region between RRM2 and RRM3. PABP-interacting protein 2 actively disrupts the bent structure of PABP to the extended structure, resulting in the inhibition of PABP-poly(A) binding. These results suggest that the changes in the configuration of PABP induced by interactions with various effector molecules, such as poly(A) and PABP-interacting protein 2, play pivotal roles in its function.


Asunto(s)
Poli A/metabolismo , Proteínas de Unión a Poli(A)/metabolismo , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Proteínas Represoras/metabolismo , Regulación Alostérica , Secuencias de Aminoácidos , Proteínas de Unión a Poli(A)/química , Unión Proteica , Conformación Proteica
6.
Nucleic Acids Res ; 40(15): 7541-51, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22638585

RESUMEN

'Ribosome scanning' is the generally accepted mechanism for explaining how a ribosome finds an initiation codon located far removed from the ribosome recruiting site (cap structure). However, the molecular characteristics of ribosome scanning along 5' untranslated regions (UTRs) remain obscure. Herein, using a rabbit reticulocyte lysate (RRL) system and artificial ribonucleic acid (RNA) constructs composed of a capped leader RNA and an uncapped reporter RNA annealed through a double-stranded RNA (dsRNA) bridge, we show that the ribosome can efficiently bypass a stable, dsRNA region without melting the structure. The insertion of an upstream open reading frame in the capped leader RNA impaired the translation of reporter RNA, indicating that a ribosome associated with the 5'-end explores the regions upstream of the dsRNA bridge in search of the initiation codon. These data indicate that a ribosome may skip part(s) of an messenger RNA 5'UTR without thoroughly scanning it.


Asunto(s)
Regiones no Traducidas 5' , Biosíntesis de Proteínas , Caperuzas de ARN/metabolismo , Sistemas de Lectura Abierta , ARN Bicatenario/metabolismo , ARN Mensajero/química
7.
Nucleic Acids Res ; 39(17): 7791-802, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21715376

RESUMEN

Translation of many cellular and viral mRNAs is directed by internal ribosomal entry sites (IRESs). Several proteins that enhance IRES activity through interactions with IRES elements have been discovered. However, the molecular basis for the IRES-activating function of the IRES-binding proteins remains unknown. Here, we report that NS1-associated protein 1 (NSAP1), which augments several cellular and viral IRES activities, enhances hepatitis C viral (HCV) IRES function by facilitating the formation of translation-competent 48S ribosome-mRNA complex. NSAP1, which is associated with the solvent side of the 40S ribosomal subunit, enhances 80S complex formation through correct positioning of HCV mRNA on the 40S ribosomal subunit. NSAP1 seems to accomplish this positioning function by directly binding to both a specific site in the mRNA downstream of the initiation codon and a 40S ribosomal protein (or proteins).


Asunto(s)
Regiones no Traducidas 5' , Hepacivirus/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Células HeLa , Hepacivirus/metabolismo , Humanos , ARN Mensajero/metabolismo , ARN Viral/metabolismo , Ribosomas/metabolismo
8.
J Virol ; 82(24): 12082-93, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18842733

RESUMEN

Hepatitis C virus (HCV) is one of the major causative agents of virus-related hepatitis, liver cirrhosis, and hepatocellular carcinoma in humans. Translation of the HCV polyprotein is mediated by an internal ribosomal entry site (IRES) in the 5' nontranslated region of the genome. Here, we report that a cellular protein, hnRNP D, interacts with the 5' border of HCV IRES (stem-loop II) and promotes translation of HCV mRNA. Overexpression of hnRNP D in mammalian cells enhances HCV IRES-dependent translation, whereas knockdown of hnRNP D with small interfering RNAs (siRNAs) inhibits translation. In addition, sequestration of hnRNP D with an interacting DNA oligomer inhibits the translation of HCV mRNA in an in vitro system. Ribosome profiling experiments reveal that HCV RNA is redistributed from heavy to light polysome fractions upon suppression of the hnRNP D level using specific siRNA. These results collectively suggest that hnRNP D plays an important role in the translation of HCV mRNA through interactions with the IRES. Moreover, knockdown of hnRNP D with siRNA significantly hampers infection by HCV. A potential role of hnRNP D in HCV proliferation is discussed.


Asunto(s)
Hepacivirus/metabolismo , Ribonucleoproteína Heterogénea-Nuclear Grupo D/metabolismo , Biosíntesis de Proteínas/genética , ARN Viral/metabolismo , Ribosomas/metabolismo , Línea Celular , Hepacivirus/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo D/genética , Humanos , Oligodesoxirribonucleótidos/genética , Unión Proteica , Interferencia de ARN , ARN Mensajero/genética , ARN Viral/genética , Replicación Viral
9.
Mol Cell Biol ; 24(18): 7878-90, 2004 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-15340051

RESUMEN

Translational initiation of hepatitis C virus (HCV) mRNA occurs by internal entry of ribosomes into an internal ribosomal entry site (IRES) at the 5' nontranslated region. A region encoding the N-terminal part of the HCV polyprotein has been shown to augment the translation of HCV mRNA. Here we show that a cellular protein, NS1-associated protein 1 (NSAP1), augments HCV mRNA translation through a specific interaction with an adenosine-rich protein-coding region within the HCV mRNA. The overexpression of NSAP1 specifically enhanced HCV IRES-dependent translation, and knockdown of NSAP1 by use of a small interfering RNA specifically inhibited the translation of HCV mRNA. An HCV replicon RNA capable of mimicking the HCV proliferation process in host cells was further used to confirm that NSAP1 enhances the translation of HCV mRNA. These results suggest the existence of a novel mechanism of translational enhancement that acts through the interaction of an RNA-binding protein with a protein coding sequence.


Asunto(s)
Hepacivirus/genética , Ribonucleoproteínas Nucleares Heterogéneas/metabolismo , Ribosomas/metabolismo , Proteínas Virales/genética , Secuencia de Aminoácidos , Animales , Secuencia de Bases , Línea Celular , Codón Iniciador/genética , ADN Complementario/genética , Células HeLa , Ribonucleoproteínas Nucleares Heterogéneas/genética , Humanos , Ratones , Datos de Secuencia Molecular , Biosíntesis de Proteínas , ARN Interferente Pequeño/genética , ARN Viral/genética , ARN Viral/metabolismo , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
10.
Mol Cell Biol ; 23(2): 708-20, 2003 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-12509468

RESUMEN

The c-myc proto-oncogene plays a key role in the proliferation, differentiation, apoptosis, and regulation of the cell cycle. Recently, it was demonstrated that the 5' nontranslated region (5' NTR) of human c-myc mRNA contains an internal ribosomal entry site (IRES). In this study, we investigated cellular proteins interacting with the IRES element of c-myc mRNA. Heterogeneous nuclear ribonucleoprotein C (hnRNP C) was identified as a cellular protein that interacts specifically with a heptameric U sequence in the c-myc IRES located between two alternative translation initiation codons CUG and AUG. Moreover, the addition of hnRNP C1 in an in vitro translation system enhanced translation of c-myc mRNA. Interestingly, hnRNP C was partially relocalized from the nucleus, where most of the hnRNP C resides at interphase, to the cytoplasm at the G(2)/M phase of the cell cycle. Coincidently, translation mediated through the c-myc IRES was increased at the G(2)/M phase when cap-dependent translation was partially inhibited. On the other hand, a mutant c-myc mRNA lacking the hnRNP C-binding site, showed a decreased level of translation at the G(2)/M phase compared to that of the wild-type message. Taken together, these findings suggest that hnRNP C, via IRES binding, modulates translation of c-myc mRNA in a cell cycle phase-dependent manner.


Asunto(s)
Ribonucleoproteína Heterogénea-Nuclear Grupo C/química , Biosíntesis de Proteínas , Proteínas Proto-Oncogénicas c-myc/metabolismo , Regiones no Traducidas 5' , Apoptosis , Sitios de Unión , Biotinilación , Northern Blotting , Ciclo Celular , Diferenciación Celular , División Celular , Separación Celular , Codón Iniciador , Electroforesis en Gel de Poliacrilamida , Citometría de Flujo , Fase G2 , Genes Reporteros , Glutatión Transferasa/metabolismo , Células HeLa , Ribonucleoproteína Heterogénea-Nuclear Grupo C/metabolismo , Humanos , Immunoblotting , Mitosis , Modelos Genéticos , Mutación , Plásmidos/metabolismo , Unión Proteica , Proto-Oncogenes Mas , ARN Mensajero/metabolismo , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/metabolismo , Transcripción Genética , Rayos Ultravioleta
11.
Nucleic Acids Res ; 32(4): 1308-17, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-14981151

RESUMEN

The translation of numerous eukaryotic mRNAs is mediated by internal ribosomal entry sites (IRESs). IRES-dependent translation requires both canonical translation initiation factors and IRES-specific trans-acting factors (ITAFs). Here we report a strategy to identify and characterize ITAFs required for IRES-dependent translation. This process involves steps for identifying oligodeoxynucleotides affecting IRES-dependent translation, purifying proteins interacting with the inhibitory DNA, identifying the specific proteins with matrix-assisted laser desorption ionization/time-of-flight mass spectrometry, and confirming the roles of these proteins in IRES-dependent translation by depletion and repletion of proteins from an in vitro translation system. Using this strategy, we show that poly(rC)-binding proteins 1 and 2 enhance translation through polioviral and rhinoviral IRES elements.


Asunto(s)
Regiones no Traducidas 5' , Oligodesoxirribonucleótidos/farmacología , Biosíntesis de Proteínas , Proteínas de Unión al ARN/análisis , Secuencia de Aminoácidos , Proteínas de Unión al ADN/fisiología , Células HeLa , Ribonucleoproteínas Nucleares Heterogéneas/antagonistas & inhibidores , Ribonucleoproteínas Nucleares Heterogéneas/química , Ribonucleoproteínas Nucleares Heterogéneas/fisiología , Humanos , Datos de Secuencia Molecular , Oligodesoxirribonucleótidos/química , Oligodesoxirribonucleótidos/metabolismo , Poliovirus/genética , Biosíntesis de Proteínas/efectos de los fármacos , Proteínas de Unión al ARN/antagonistas & inhibidores , Proteínas de Unión al ARN/metabolismo , Rhinovirus/genética , Ribosomas/química , Ribosomas/genética , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción , Factores de Transcripción/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda