Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Cell Sci ; 136(2)2023 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-36601911

RESUMEN

Cell polarization in response to chemical gradients is important in development and homeostasis across eukaryota. Chemosensing cells orient toward or away from gradient sources by polarizing along a front-rear axis. Using the mating response of budding yeast as a model of chemotropic cell polarization, we found that Dcv1, a member of the claudin superfamily, influences front-rear polarity. Although Dcv1 localized uniformly on the plasma membrane (PM) of vegetative cells, it was confined to the rear of cells responding to pheromone, away from the pheromone receptor. dcv1Δ conferred mislocalization of sensory, polarity and trafficking proteins, as well as PM lipids. These phenotypes correlated with defects in pheromone-gradient tracking and cell fusion. We propose that Dcv1 helps demarcate the mating-specific front domain primarily by restricting PM lipid distribution.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Feromonas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Membrana Celular/metabolismo , Polaridad Celular/fisiología
2.
Development ; 144(16): 2940-2950, 2017 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-28705895

RESUMEN

Hypoxia signaling is an ancient pathway by which animals can respond to low oxygen. Malfunction of this pathway disturbs hypoxic acclimation and can result in various diseases, including cancers. The role of hypoxia signaling in early embryogenesis remains unclear. Here, we show that in the blastula of the sea urchin Strongylocentrotus purpuratus, hypoxia-inducible factor α (HIFα), the downstream transcription factor of the hypoxia pathway, is localized and transcriptionally active on the future dorsal side. This asymmetric distribution is attributable to its oxygen-sensing ability. Manipulations of the HIFα level entrained the dorsoventral axis, as the side with the higher level of HIFα tends to develop into the dorsal side. Gene expression analyses revealed that HIFα restricts the expression of nodal to the ventral side and activates several genes encoding transcription factors on the dorsal side. We also observed that intrinsic hypoxic signals in the early embryos formed a gradient, which was disrupted under hypoxic conditions. Our results reveal an unprecedented role of the hypoxia pathway in animal development.


Asunto(s)
Embrión no Mamífero/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Erizos de Mar/embriología , Erizos de Mar/metabolismo , Animales , Tipificación del Cuerpo/genética , Tipificación del Cuerpo/fisiología , Regulación del Desarrollo de la Expresión Génica/genética , Regulación del Desarrollo de la Expresión Génica/fisiología , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Transducción de Señal/genética , Transducción de Señal/fisiología
3.
Dev Biol ; 410(1): 108-18, 2016 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-26719126

RESUMEN

The spatially opposed expression of Antidorsalizing morphogenetic protein (Admp) and BMP signals controls dorsoventral (DV) polarity across Bilateria and hence represents an ancient regulatory circuit. Here, we show that in addition to the conserved admp1 that constitutes the ancient circuit, a second admp gene (admp2) is present in Ambulacraria (Echinodermata+Hemichordata) and two marine worms belonging to Xenoturbellida and Acoelomorpha. The phylogenetic distribution implies that the two admp genes were duplicated in the Bilaterian common ancestor and admp2 was subsequently lost in chordates and protostomes. We show that the ambulacrarian admp1 and admp2 are under opposite transcriptional control by BMP signals and knockdown of Admps in sea urchins impaired their DV polarity. Over-expression of either Admps reinforced BMP signaling but resulted in different phenotypes in the sea urchin embryo. Our study provides an excellent example of signaling circuit rewiring and protein functional changes after gene duplications.


Asunto(s)
Tipificación del Cuerpo , Proteínas Morfogenéticas Óseas/fisiología , Duplicación de Gen , Factor de Crecimiento Transformador beta/fisiología , Animales , Proteínas Morfogenéticas Óseas/genética , Filogenia , Erizos de Mar/embriología , Transducción de Señal , Factor de Crecimiento Transformador beta/genética , Pez Cebra/embriología
4.
Proc Natl Acad Sci U S A ; 109(47): 19232-7, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23132938

RESUMEN

Transcription initiation by eukaryotic RNA polymerase (Pol) III relies on the TFIIE-related subcomplex C82/34/31. Here we combine cross-linking and hydroxyl radical probing to position the C82/34/31 subcomplex around the Pol III active center cleft. The extended winged helix (WH) domains 1 and 4 of C82 localize to the polymerase domains clamp head and clamp core, respectively, and the two WH domains of C34 span the polymerase cleft from the coiled-coil region of the clamp to the protrusion. The WH domains of C82 and C34 apparently cooperate with other mobile regions flanking the cleft during promoter DNA binding, opening, and loading. Together with published data, our results complete the subunit architecture of Pol III and indicate that all TFIIE-related components of eukaryotic and archaeal transcription systems adopt an evolutionarily conserved location in the upper part of the cleft that supports their functions in open promoter complex formation and stabilization.


Asunto(s)
Conformación de Ácido Nucleico , Regiones Promotoras Genéticas/genética , Subunidades de Proteína/química , ARN Polimerasa III/química , Saccharomyces cerevisiae/enzimología , Dominio Catalítico , Reactivos de Enlaces Cruzados/farmacología , Luz , Lisina/metabolismo , Modelos Moleculares , Unión Proteica/efectos de los fármacos , Unión Proteica/efectos de la radiación , Mapas de Interacción de Proteínas/efectos de los fármacos , Mapas de Interacción de Proteínas/efectos de la radiación , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Subunidades de Proteína/metabolismo , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/efectos de la radiación , ARN Polimerasa III/metabolismo , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/efectos de la radiación , Relación Estructura-Actividad
5.
J Cell Biol ; 221(12)2022 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-36156058

RESUMEN

The mating of budding yeast depends on chemotropism, a fundamental cellular process. Haploid yeast cells of opposite mating type signal their positions to one another through mating pheromones. We have proposed a deterministic gradient sensing model that explains how these cells orient toward their mating partners. Using the cell-cycle determined default polarity site (DS), cells assemble a gradient tracking machine (GTM) composed of signaling, polarity, and trafficking proteins. After assembly, the GTM redistributes up the gradient, aligns with the pheromone source, and triggers polarized growth toward the partner. Since positive feedback mechanisms drive polarized growth at the DS, it is unclear how the GTM is released for tracking. What prevents the GTM from triggering polarized growth at the DS? Here, we describe two mechanisms that are essential for tracking: inactivation of the Ras GTPase Bud1 and positioning of actin-independent vesicle delivery upgradient.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Vesículas Transportadoras , Proteínas de Unión al GTP rab , Actinas/metabolismo , Polaridad Celular/fisiología , Feromonas/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas ras/metabolismo
6.
Elife ; 42015 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-26218224

RESUMEN

Evolutionary origin of muscle is a central question when discussing mesoderm evolution. Developmental mechanisms underlying somatic muscle development have mostly been studied in vertebrates and fly where multiple signals and hierarchic genetic regulatory cascades selectively specify myoblasts from a pool of naive mesodermal progenitors. However, due to the increased organismic complexity and distant phylogenetic position of the two systems, a general mechanistic understanding of myogenesis is still lacking. In this study, we propose a gene regulatory network (GRN) model that promotes myogenesis in the sea urchin embryo, an early branching deuterostome. A fibroblast growth factor signaling and four Forkhead transcription factors consist the central part of our model and appear to orchestrate the myogenic process. The topological properties of the network reveal dense gene interwiring and a multilevel transcriptional regulation of conserved and novel myogenic genes. Finally, the comparison of the myogenic network architecture among different animal groups highlights the evolutionary plasticity of developmental GRNs.


Asunto(s)
Equinodermos/embriología , Equinodermos/genética , Regulación del Desarrollo de la Expresión Génica , Animales , Redes Reguladoras de Genes , Modelos Biológicos , Desarrollo de Músculos , Transcripción Genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda