Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Toxicon ; 163: 59-69, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30902682

RESUMEN

Phoneutria nigriventer spider venom has been studied for more than 40 years and several components with pharmacological potential have been described in it. However, studies on venoms from other species of the Phoneutria genus are scarce. In this work, a conventional cDNA library from the species Phoneutria pertyi venom glands was constructed, aiming to identify novel putative cysteine-rich peptide toxins for the genus Phoneutria. 296 unique sequences were identified and 51 sequences corresponded to putative cysteine-rich peptide toxins. Besides cysteine-rich peptide toxins, other putative venom components such as protease inhibitors, defensins and serine proteinases were identified. Furthermore, by manual curation of the sequences with no match at UniProt, we were able to identify glycine-rich proteins (GRP), a class of venom component never described in Phoneutria genus. This work describes the first complete sequences of toxins from the venom of P. pertyi and reveals that, despite most of the retrieved toxins show a high identity to toxins identified in Phoneutria genus, novel putative toxins remains to be described.


Asunto(s)
Venenos de Araña/química , Transcriptoma , Animales , Proteínas de Artrópodos/análisis , ADN Complementario/genética , ADN Complementario/metabolismo , Defensinas/análisis , Perfilación de la Expresión Génica , Péptidos/análisis , Inhibidores de Proteasas/análisis , Serina Proteasas/análisis , Arañas/genética , Arañas/metabolismo
2.
PLoS One ; 13(8): e0200628, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30067761

RESUMEN

Phoneutria nigriventer is one of the largest existing true spiders and one of the few considered medically relevant. Its venom contains several neurotoxic peptides that act on different ion channels and chemical receptors of vertebrates and invertebrates. Some of these venom toxins have been shown as promising models for pharmaceutical or biotechnological use. However, the large diversity and the predominance of low molecular weight toxins in this venom have hampered the identification and deep investigation of the less abundant toxins and the proteins with high molecular weight. Here, we combined conventional and next-generation cDNA sequencing with Multidimensional Protein Identification Technology (MudPIT), to obtain an in-depth panorama of the composition of P. nigriventer spider venom. The results from these three approaches showed that cysteine-rich peptide toxins are the most abundant components in this venom and most of them contain the Inhibitor Cysteine Knot (ICK) structural motif. Ninety-eight sequences corresponding to cysteine-rich peptide toxins were identified by the three methodologies and many of them were considered as putative novel toxins, due to the low similarity to previously described toxins. Furthermore, using next-generation sequencing we identified families of several other classes of toxins, including CAPs (Cysteine Rich Secretory Protein-CRiSP, antigen 5 and Pathogenesis-Related 1-PR-1), serine proteinases, TCTPs (translationally controlled tumor proteins), proteinase inhibitors, metalloproteinases and hyaluronidases, which have been poorly described for this venom. This study provides an overview of the molecular diversity of P. nigriventer venom, revealing several novel components and providing a better basis to understand its toxicity and pharmacological activities.


Asunto(s)
Proteómica , Venenos de Araña/metabolismo , Arañas/metabolismo , Transcriptoma , Secuencia de Aminoácidos , Animales , Biomarcadores de Tumor/química , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , ADN Complementario/química , ADN Complementario/genética , ADN Complementario/metabolismo , Secuenciación de Nucleótidos de Alto Rendimiento , Glicoproteínas de Membrana/química , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Péptidos/metabolismo , Alineación de Secuencia , Análisis de Secuencia de ADN , Arañas/genética , Toxinas Biológicas/genética , Toxinas Biológicas/metabolismo , Proteína Tumoral Controlada Traslacionalmente 1
3.
Biochimie ; 121: 326-35, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26747232

RESUMEN

The toxin PnTx4(5-5) from the spider Phoneutria nigriventer is extremely toxic/lethal to insects but has no macroscopic behavioral effects observed in mice after intracerebral injection. Nevertheless, it was demonstrated that it inhibits the N-methyl-d-aspartate (NMDA) - subtype of glutamate receptors of cultured rat hippocampal neurons. PnTx4(5-5) has 63% identity to PnTx4(6-1), another insecticidal toxin from P. nigriventer, which can slow down the sodium current inactivation in insect central nervous system, but has no effect on Nav1.2 and Nav1.4 rat sodium channels. Here, we have cloned and heterologous expressed the toxin PnTx4(5-5) in Escherichia coli. The recombinant toxin rPnTx4(5-5) was tested on the sodium channel NavBg from the cockroach Blatella germanica and on mammalian sodium channels Nav1.2-1.6, all expressed in Xenopus leavis oocytes. We showed that the toxin has different affinity and mode of action on insect and mammalian sodium channels. The most remarkable effect was on NavBg, where rPnTx4(5-5) strongly slowed down channel inactivation (EC50 = 212.5 nM), and at 1 µM caused an increase on current peak amplitude of 105.2 ± 3.1%. Interestingly, the toxin also inhibited sodium current on all the mammalian channels tested, with the higher current inhibition on Nav1.3 (38.43 ± 8.04%, IC50 = 1.5 µM). Analysis of activation curves on Nav1.3 and Nav1.5 showed that the toxin shifts channel activation to more depolarized potentials, which can explain the sodium current inhibition. Furthermore, the toxin also slightly slowed down sodium inactivation on Nav1.3 and Nav1.6 channels. As far as we know, this is the first araneomorph toxin described which can shift the sodium channel activation to more depolarized potentials and also slows down channel inactivation.


Asunto(s)
Escherichia coli/metabolismo , Neurotoxinas/toxicidad , Canales de Sodio/efectos de los fármacos , Venenos de Araña/toxicidad , Animales , Cucarachas , Escherichia coli/genética , Neurotoxinas/genética , Neurotoxinas/metabolismo , Bloqueadores de los Canales de Sodio/metabolismo , Bloqueadores de los Canales de Sodio/toxicidad , Canales de Sodio/metabolismo , Venenos de Araña/química , Arañas/genética
4.
PLoS One ; 13(8): e0200628, 2018.
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: but-ib15455

RESUMEN

Phoneutria nigriventer is one of the largest existing true spiders and one of the few considered medically relevant. Its venom contains several neurotoxic peptides that act on different ion channels and chemical receptors of vertebrates and invertebrates. Some of these venom toxins have been shown as promising models for pharmaceutical or biotechnological use. However, the large diversity and the predominance of low molecular weight toxins in this venom have hampered the identification and deep investigation of the less abundant toxins and the proteins with high molecular weight. Here, we combined conventional and next-generation cDNA sequencing with Multidimensional Protein Identification Technology (MudPIT), to obtain an in-depth panorama of the composition of P. nigriventerspider venom. The results from these three approaches showed that cysteine-rich peptide toxins are the most abundant components in this venom and most of them contain the Inhibitor Cysteine Knot (ICK) structural motif. Ninety-eight sequences corresponding to cysteine-rich peptide toxins were identified by the three methodologies and many of them were considered as putative novel toxins, due to the low similarity to previously described toxins. Furthermore, using next-generation sequencing we identified families of several other classes of toxins, including CAPs (Cysteine Rich Secretory Protein-CRiSP, antigen 5 and Pathogenesis-Related 1-PR-1), serine proteinases, TCTPs (translationally controlled tumor proteins), proteinase inhibitors, metalloproteinases and hyaluronidases, which have been poorly described for this venom. This study provides an overview of the molecular diversity of P. nigriventervenom, revealing several novel components and providing a better basis to understand its toxicity and pharmacological activities.

5.
PLoS One, v. 13, n. 8, e0200628, ago. 2018
Artículo en Inglés | SES-SP, SES SP - Instituto Butantan, SES-SP | ID: bud-2549

RESUMEN

Phoneutria nigriventer is one of the largest existing true spiders and one of the few considered medically relevant. Its venom contains several neurotoxic peptides that act on different ion channels and chemical receptors of vertebrates and invertebrates. Some of these venom toxins have been shown as promising models for pharmaceutical or biotechnological use. However, the large diversity and the predominance of low molecular weight toxins in this venom have hampered the identification and deep investigation of the less abundant toxins and the proteins with high molecular weight. Here, we combined conventional and next-generation cDNA sequencing with Multidimensional Protein Identification Technology (MudPIT), to obtain an in-depth panorama of the composition of P. nigriventerspider venom. The results from these three approaches showed that cysteine-rich peptide toxins are the most abundant components in this venom and most of them contain the Inhibitor Cysteine Knot (ICK) structural motif. Ninety-eight sequences corresponding to cysteine-rich peptide toxins were identified by the three methodologies and many of them were considered as putative novel toxins, due to the low similarity to previously described toxins. Furthermore, using next-generation sequencing we identified families of several other classes of toxins, including CAPs (Cysteine Rich Secretory Protein-CRiSP, antigen 5 and Pathogenesis-Related 1-PR-1), serine proteinases, TCTPs (translationally controlled tumor proteins), proteinase inhibitors, metalloproteinases and hyaluronidases, which have been poorly described for this venom. This study provides an overview of the molecular diversity of P. nigriventervenom, revealing several novel components and providing a better basis to understand its toxicity and pharmacological activities.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda