Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 274
Filtrar
Más filtros

Tipo del documento
Publication year range
1.
Cell ; 162(1): 160-9, 2015 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-26140596

RESUMEN

Protective vaccines elicit high-affinity, neutralizing antibodies by selection of somatically hypermutated B cell antigen receptors (BCR) on immune complexes (ICs). This implicates Fc-Fc receptor (FcR) interactions in affinity maturation, which, in turn, are determined by IgG subclass and Fc glycan composition within ICs. Trivalent influenza virus vaccination elicited regulation of anti-hemagglutinin (HA) IgG subclass and Fc glycans, with abundance of sialylated Fc glycans (sFc) predicting quality of vaccine response. We show that sFcs drive BCR affinity selection by binding the Type-II FcR CD23, thus upregulating the inhibitory FcγRIIB on activated B cells. This elevates the threshold requirement for BCR signaling, resulting in B cell selection for higher affinity BCR. Immunization with sFc HA ICs elicited protective, high-affinity IgGs against the conserved stalk of the HA. These results reveal a novel, endogenous pathway for affinity maturation that can be exploited for eliciting high-affinity, broadly neutralizing antibodies through immunization with sialylated immune complexes.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Vacunas contra la Influenza/inmunología , Receptores de Antígenos de Linfocitos B/inmunología , Complejo Antígeno-Anticuerpo/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Fragmentos Fc de Inmunoglobulinas , Inmunoglobulina G/inmunología , Células Plasmáticas/inmunología , Receptores de Antígenos de Linfocitos B/química , Receptores Fc/metabolismo , Ácidos Siálicos/metabolismo
2.
Nat Immunol ; 18(4): 464-473, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28192418

RESUMEN

Infection with influenza virus induces antibodies to the viral surface glycoproteins hemagglutinin and neuraminidase, and these responses can be broadly protective. To assess the breadth and magnitude of antibody responses, we sequentially infected mice, guinea pigs and ferrets with divergent H1N1 or H3N2 subtypes of influenza virus. We measured antibody responses by ELISA of an extensive panel of recombinant glycoproteins representing the viral diversity in nature. Guinea pigs developed high titers of broadly cross-reactive antibodies; mice and ferrets exhibited narrower humoral responses. Then, we compared antibody responses after infection of humans with influenza virus H1N1 or H3N2 and found markedly broad responses and cogent evidence for 'original antigenic sin'. This work will inform the design of universal vaccines against influenza virus and can guide pandemic-preparedness efforts directed against emerging influenza viruses.


Asunto(s)
Anticuerpos Antivirales/inmunología , Reacciones Cruzadas/inmunología , Virus de la Influenza A/inmunología , Gripe Humana/inmunología , Infecciones por Orthomyxoviridae/inmunología , Proteínas del Envoltorio Viral/inmunología , Adolescente , Adulto , Factores de Edad , Animales , Análisis por Conglomerados , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Femenino , Hurones , Cobayas , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Inmunoglobulina G/inmunología , Virus de la Influenza A/clasificación , Masculino , Ratones , Persona de Mediana Edad , Neuraminidasa/inmunología , Proteínas Virales/inmunología , Adulto Joven
3.
Immunity ; 53(6): 1230-1244.e5, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33096040

RESUMEN

Polyreactivity is the ability of a single antibody to bind to multiple molecularly distinct antigens and is a common feature of antibodies induced upon pathogen exposure. However, little is known about the role of polyreactivity during anti-influenza virus antibody responses. By analyzing more than 500 monoclonal antibodies (mAbs) derived from B cells induced by numerous influenza virus vaccines and infections, we found mAbs targeting conserved neutralizing influenza virus hemagglutinin epitopes were polyreactive. Polyreactive mAbs were preferentially induced by novel viral exposures due to their broad viral binding breadth. Polyreactivity augmented mAb viral binding strength by increasing antibody flexibility, allowing for adaption to imperfectly conserved epitopes. Lastly, we found affinity-matured polyreactive B cells were typically derived from germline polyreactive B cells that were preferentially selected to participate in B cell responses over time. Together, our data reveal that polyreactivity is a beneficial feature of antibodies targeting conserved epitopes.


Asunto(s)
Linfocitos B/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Orthomyxoviridae/inmunología , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/inmunología , Afinidad de Anticuerpos , Anticuerpos ampliamente neutralizantes/genética , Reacciones Cruzadas , Epítopos de Linfocito B/inmunología , Genes de Inmunoglobulinas , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Orthomyxoviridae/clasificación , Dominios Proteicos , Hipermutación Somática de Inmunoglobulina
4.
Cell ; 157(2): 294-299, 2014 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-24725400

RESUMEN

The looming threat of a new influenza virus pandemic has fueled ambitious efforts to devise more predictive parameters for assessing the risks associated with emergent virus strains. At the same time, a comprehensive understanding of critical factors that can accurately predict the outcome of vaccination is sorely needed in order to improve the effectiveness of influenza virus vaccines. Will new studies aimed at identifying adaptations required for virus transmissibility and systems-level analyses of influenza virus vaccine responses provide an improved framework for predictive models of viral adaptation and vaccine efficacy?


Asunto(s)
Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Animales , Modelos Animales de Enfermedad , Hurones , Humanos , Vacunas contra la Influenza/genética , Gripe Humana/epidemiología , Gripe Humana/prevención & control , Gripe Humana/virología , Pandemias/prevención & control
5.
Nature ; 602(7896): 314-320, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34942633

RESUMEN

Broadly neutralizing antibodies that target epitopes of haemagglutinin on the influenza virus have the potential to provide near universal protection against influenza virus infection1. However, viral mutants that escape broadly neutralizing antibodies have been reported2,3. The identification of broadly neutralizing antibody classes that can neutralize viral escape mutants is critical for universal influenza virus vaccine design. Here we report a distinct class of broadly neutralizing antibodies that target a discrete membrane-proximal anchor epitope of the haemagglutinin stalk domain. Anchor epitope-targeting antibodies are broadly neutralizing across H1 viruses and can cross-react with H2 and H5 viruses that are a pandemic threat. Antibodies that target this anchor epitope utilize a highly restricted repertoire, which encodes two public binding motifs that make extensive contacts with conserved residues in the fusion peptide. Moreover, anchor epitope-targeting B cells are common in the human memory B cell repertoire and were recalled in humans by an oil-in-water adjuvanted chimeric haemagglutinin vaccine4,5, which is a potential universal influenza virus vaccine. To maximize protection against seasonal and pandemic influenza viruses, vaccines should aim to boost this previously untapped source of broadly neutralizing antibodies that are widespread in the human memory B cell pool.


Asunto(s)
Anticuerpos Neutralizantes , Anticuerpos Antivirales , Anticuerpos ampliamente neutralizantes , Epítopos , Glicoproteínas Hemaglutininas del Virus de la Influenza , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Anticuerpos ampliamente neutralizantes/inmunología , Epítopos/química , Epítopos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Humanos , Vacunas contra la Influenza/inmunología , Gripe Humana/inmunología , Gripe Humana/prevención & control , Gripe Humana/virología , Células B de Memoria/inmunología
6.
Proc Natl Acad Sci U S A ; 120(44): e2314905120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37871218

RESUMEN

Antibody responses against highly conserved epitopes on the stalk domain of influenza virus hemagglutinin (HA) confer broad protection; however, such responses are limited. To effectively induce stalk-specific immunity against conserved HA epitopes, sequential immunization strategies have been developed based on chimeric HA (cHA) constructs featuring different head domains but the same stalk regions. Immunogenicity studies in small animal models, as well as in humans, revealed that cHA immunogens elicit stalk-specific IgG responses with broad specificity against heterologous influenza virus strains. However, the mechanisms by which these antibodies confer in vivo protection and the contribution of their Fc effector function remain unclear. To characterize the role of Fc-FcγR (Fcγ receptor) interactions to the in vivo protective activity of IgG antibodies elicited in participants in a phase I trial of a cHA vaccine candidate, we performed passive transfer studies of vaccine-elicited IgG antibodies in mice humanized for all classes of FcγRs, as well as in mice deficient for FcγRs. IgG antibodies elicited upon cHA vaccination completely protected FcγR humanized mice against lethal influenza virus challenge, while no protection was evident in FcγR-deficient mice, suggesting a major role for FcγR pathways in the protective function of vaccine-elicited IgG antibodies. These findings have important implications for influenza vaccine development, guiding the design of vaccination approaches with the capacity to elicit IgG responses with optimal Fc effector function.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Orthomyxoviridae , Humanos , Animales , Ratones , Hemaglutininas , Receptores de IgG/genética , Receptores de IgG/metabolismo , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Orthomyxoviridae/metabolismo , Gripe Humana/prevención & control , Vacunación , Inmunoglobulina G , Epítopos
7.
Immunity ; 44(1): 46-58, 2016 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-26789921

RESUMEN

Viruses are obligate parasites and thus require the machinery of the host cell to replicate. Inhibition of host factors co-opted during active infection is a strategy hosts use to suppress viral replication and a potential pan-antiviral therapy. To define the cellular proteins and processes required for a virus during infection is thus crucial to understanding the mechanisms of virally induced disease. In this report, we generated fully infectious tagged influenza viruses and used infection-based proteomics to identify pivotal arms of cellular signaling required for influenza virus growth and infectivity. Using mathematical modeling and genetic and pharmacologic approaches, we revealed that modulation of Sec61-mediated cotranslational translocation selectively impaired glycoprotein proteostasis of influenza as well as HIV and dengue viruses and led to inhibition of viral growth and infectivity. Thus, by studying virus-human protein-protein interactions in the context of active replication, we have identified targetable host factors for broad-spectrum antiviral therapies.


Asunto(s)
Interacciones Huésped-Parásitos/fisiología , Virus de la Influenza A/fisiología , Virus de la Influenza A/patogenicidad , Modelos Teóricos , Replicación Viral/fisiología , Virus del Dengue/patogenicidad , Virus del Dengue/fisiología , VIH/patogenicidad , VIH/fisiología , Humanos , Inmunoprecipitación , Espectrometría de Masas , Pliegue de Proteína , Proteómica
8.
Proc Natl Acad Sci U S A ; 119(21): e2200821119, 2022 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-35594401

RESUMEN

Influenza virus hemagglutinin (HA) has been the primary target for influenza vaccine development. Broadly protective antibodies targeting conserved regions of the HA unlock the possibility of generating universal influenza immunity. Two group 2 influenza A chimeric HAs, cH4/3 and cH15/3, were previously designed to elicit antibodies to the conserved HA stem. Here, we show by X-ray crystallography and negative-stain electron microscopy that a broadly protective antistem antibody can stably bind to cH4/3 and cH15/3 HAs, thereby validating their potential as universal vaccine immunogens. Furthermore, flexibility was observed in the head domain of the chimeric HA structures, suggesting that antibodies could also potentially interact with the head interface epitope. Our structural and binding studies demonstrated that a broadly protective antihead trimeric interface antibody could indeed target the more open head domain of the cH15/3 HA trimer. Thus, in addition to inducing broadly protective antibodies against the conserved HA stem, chimeric HAs may also be able to elicit antibodies against the conserved trimer interface in the HA head domain, thereby increasing the vaccine efficacy.


Asunto(s)
Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Anticuerpos Neutralizantes , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza , Hemaglutininas , Humanos , Gripe Humana/prevención & control , Infecciones por Orthomyxoviridae/prevención & control
9.
J Virol ; 97(1): e0107022, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36533948

RESUMEN

Current influenza virus vaccines have to be closely matched to circulating strains to provide good protection, and antigenic drift and emerging pandemic influenza virus strains present a difficult challenge for them. Universal influenza virus vaccines, including chimeric hemagglutinin (cHA)-based constructs that target the conserved stalk domain of hemagglutinin, are in clinical development. Due to the conservation of the stalk domain, antibodies directed to it show broad binding profiles, usually within group 1 and group 2 influenza A or influenza B virus phylogenies. However, determining the binding breadth of these antibodies with commonly used immunological methods can be challenging. Here, we analyzed serum samples from a phase I clinical trial (CVIA057, NCT03300050) using an influenza virus protein microarray (IVPM). The IVPM technology allowed us to assess immune responses not only to a large number of group 1 hemagglutinins but also group 2 and influenza B virus hemagglutinins. In CVIA057, different vaccine modalities, including a live attenuated influenza virus vaccine and inactivated influenza virus vaccines with or without adjuvant, all in the context of cHA constructs, were tested. We found that vaccination with adjuvanted, inactivated vaccines induced a very broad antibody response covering group 1 hemagglutinins, with limited induction of antibodies to group 2 hemagglutinins. Our data show that cHA constructs do indeed induce very broad immune responses and that the IVPM technology is a useful tool to measure this breadth that broadly protective or universal influenza virus vaccines aim to induce. IMPORTANCE The development of a universal influenza virus vaccine that protects against seasonal drifted, zoonotic, or emerging pandemic influenza viruses would be an extremely useful public health tool. Here, we test a technology designed to measure the breadth of antibody responses induced by this new class of vaccines.


Asunto(s)
Reacciones Cruzadas , Vacunas contra la Influenza , Gripe Humana , Humanos , Adyuvantes Inmunológicos , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Virus de la Influenza B , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Virus de la Influenza A
10.
Cell ; 137(6): 983-5, 2009 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-19524497

RESUMEN

Influenza virus outbreaks occur with regularity, but the severity of outbreaks is not consistent. The recent flu epidemic caused by an H1N1 swine influenza virus presents an opportunity to examine what is known about virulence factors and the spread of infection to better prepare for major influenza outbreaks in the future.


Asunto(s)
Brotes de Enfermedades , Subtipo H1N1 del Virus de la Influenza A/clasificación , Gripe Humana/epidemiología , Gripe Humana/virología , Animales , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Gripe Humana/fisiopatología
11.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artículo en Inglés | MEDLINE | ID: mdl-33593910

RESUMEN

In this study, we utilized a panel of human immunoglobulin (Ig) IgA monoclonal antibodies isolated from the plasmablasts of eight donors after 2014/2015 influenza virus vaccination (Fluarix) to study the binding and functional specificities of this isotype. In this cohort, isolated IgA monoclonal antibodies were primarily elicited against the hemagglutinin protein of the H1N1 component of the vaccine. To compare effector functionalities, an H1-specific subset of antibodies targeting distinct epitopes were expressed as monomeric, dimeric, or secretory IgA, as well as in an IgG1 backbone. When expressed with an IgG Fc domain, all antibodies elicited Fc-effector activity in a primary polymorphonuclear cell-based assay which differs from previous observations that found only stalk-specific antibodies activate the low-affinity FcγRIIIa. However, when expressed with IgA Fc domains, only antibodies targeting the stalk domain showed Fc-effector activity in line with these previous findings. To identify the cause of this discrepancy, we then confirmed that IgG signaling through the high-affinity FcγI receptor was not restricted to stalk epitopes. Since no corresponding high-affinity Fcα receptor exists, the IgA repertoire may therefore be limited to stalk-specific epitopes in the context of Fc receptor signaling.


Asunto(s)
Epítopos/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Inmunoglobulina A/inmunología , Fragmentos Fc de Inmunoglobulinas/inmunología , Subtipo H1N1 del Virus de la Influenza A/inmunología , Adulto , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/metabolismo , Afinidad de Anticuerpos , Sitios de Unión de Anticuerpos , Embrión de Pollo , Microscopía por Crioelectrón , Femenino , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Vacunas contra la Influenza/inmunología , Masculino , Neutrófilos/inmunología , Neutrófilos/virología
12.
Mol Ther ; 30(5): 2024-2047, 2022 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-34999208

RESUMEN

Conventional influenza vaccines fail to confer broad protection against diverse influenza A viruses with pandemic potential. Efforts to develop a universal influenza virus vaccine include refocusing immunity towards the highly conserved stalk domain of the influenza virus surface glycoprotein, hemagglutinin (HA). We constructed a non-replicating adenoviral (Ad) vector, encoding a secreted form of H1 HA, to evaluate HA stalk-focused immunity. The Ad5_H1 vaccine was tested in mice for its ability to elicit broad, cross-reactive protection against homologous, heterologous, and heterosubtypic lethal challenge in a single-shot immunization regimen. Ad5_H1 elicited hemagglutination inhibition (HI+) active antibodies (Abs), which conferred 100% sterilizing protection from homologous H1N1 challenge. Furthermore, Ad5_H1 rapidly induced H1-stalk-specific Abs with Fc-mediated effector function activity, in addition to stimulating both CD4+ and CD8+ stalk-specific T cell responses. This phenotype of immunity provided 100% protection from lethal challenge with a head-mismatched, reassortant influenza virus bearing a chimeric HA, cH6/1, in a stalk-mediated manner. Most importantly, 100% protection from mortality following lethal challenge with a heterosubtypic avian influenza virus, H5N1, was observed following a single immunization with Ad5_H1. In conclusion, Ad-based influenza vaccines can elicit significant breadth of protection in naive animals and could be considered for pandemic preparedness and stockpiling.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Subtipo H5N1 del Virus de la Influenza A , Virus de la Influenza A , Vacunas contra la Influenza , Gripe Humana , Infecciones por Orthomyxoviridae , Adenoviridae/genética , Animales , Anticuerpos Antivirales , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Hemaglutininas , Humanos , Subtipo H5N1 del Virus de la Influenza A/genética , Gripe Humana/prevención & control , Ratones , Ratones Endogámicos BALB C
13.
Proc Natl Acad Sci U S A ; 117(6): 2767-2769, 2020 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-31988118

RESUMEN

While single-cell sequencing technologies have revealed tissue heterogeneity, resolving mixed cellular libraries into cellular clones is essential for many pooled screens and clonal lineage tracing. Fluorescent proteins are limited in number, while DNA barcodes can only be read after cell lysis. To overcome these limitations, we used influenza virus hemagglutinins to engineer a genetically encoded cell-surface protein barcoding system. Using antibodies paired to hemagglutinins carrying combinations of escape mutations, we developed an exponential protein barcoding system which can label 128 clones using seven antibodies. This study provides a proof of principle for a strategy to create protein-level cell barcodes that can be used in vivo in mice to track clonal populations.


Asunto(s)
Anticuerpos Monoclonales/análisis , Rastreo Celular/métodos , Glicoproteínas Hemaglutininas del Virus de la Influenza/análisis , Animales , Rastreo Celular/instrumentación , Femenino , Citometría de Flujo/métodos , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Melanoma/química , Melanoma/genética , Melanoma/metabolismo , Ratones , Ratones Endogámicos C57BL , Orthomyxoviridae/química , Orthomyxoviridae/genética , Orthomyxoviridae/metabolismo
14.
Annu Rev Med ; 71: 315-327, 2020 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-31600454

RESUMEN

Influenza viruses remain a severe burden to human health because of their contribution to overall morbidity and mortality. Current seasonal influenza virus vaccines do not provide sufficient protection to alleviate the annual impact of influenza and cannot confer protection against potentially pandemic influenza viruses. The lack of protection is due to rapid changes of the viral epitopes targeted by the vaccine and the often suboptimal immunogenicity of current immunization strategies. Major efforts to improve vaccination approaches are under way. The development of a universal influenza virus vaccine may be possible by combining the lessons learned from redirecting the immune response toward conserved viral epitopes, as well as the use of adjuvants and novel vaccination platforms.


Asunto(s)
Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/inmunología , Gripe Humana/prevención & control , Vacunación/métodos , Femenino , Humanos , Inmunización/métodos , Vacunas contra la Influenza/farmacología , Masculino , Mutación/genética , Pronóstico , Recurrencia , Medición de Riesgo
16.
J Virol ; 94(3)2020 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-31694938

RESUMEN

Newcastle disease virus (NDV) is an attractive candidate for oncolytic immunotherapy due to its ability to replicate in tumor cells and potentially to overcome the inherently immunosuppressive nature of the tumor microenvironment. The advent of checkpoint blockade immunotherapy over the past few years represents a paradigm shift in cancer therapy. However, the prevalence of severe immune-related adverse events with CTLA4 and PD1 pathway blockade in clinical studies, especially in combination therapy groups, is a cause for concern. Immunotherapies with cytokines have also been extensively explored, but they have been associated with adverse events in clinical trials. Oncolytic vectors engineered to express checkpoint blockade antibodies and cytokines could provide an avenue for reducing the clinical toxicity associated with systemic therapy by concentrating the immunomodulatory payload at the site of disease. In this study, we engineered six different recombinant viruses: NDVs expressing checkpoint inhibitors (rNDV-anti-PD1 and rNDV-anti-PDL1); superagonists (rNDV-anti-CD28); and immunocytokines, where the antibodies are fused to an immunostimulatory cytokine, such as interleukin 12 (IL-12) (rNDV-anti-CD28-murine IL-12 [mIL-12], rNDV-anti-PD1-mIL-12, and rNDV-anti-PDL1-mIL-12). These six engineered viruses induced tumor control and survival benefits in both highly aggressive unilateral and bilateral B16-F10 murine melanoma models, indicative of an abscopal effect. The data represent a strong proof of concept on which further clinical evaluation could build.IMPORTANCE Checkpoint inhibitor therapy has shown tremendous efficacy, but also frequent and often severe side effects-especially when multiple drugs of the class are used simultaneously. Similarly, many investigational immunotherapy agents, which have shown promise in animal models, have failed in clinical trials due to dose-limiting toxicity when administered systemically. This study utilized a murine melanoma model to evaluate the efficacy of intratumoral injections of recombinant NDVs engineered to express multiple immunotherapeutic proteins with well-documented side effects in humans. Our results indicate that intratumoral administration of these recombinant NDVs, particularly when combined with systemic CTLA4 checkpoint inhibition, exerts a robust effect in treated and nontreated tumors, indicative of a systemic antitumoral response. The intratumoral delivery of rNDVs expressing immunotherapeutic proteins may be an effective method of targeting the immune cell populations most relevant for antitumoral immunity and allowing us to restrict the use of systemic immunotherapy agents.


Asunto(s)
Antineoplásicos/farmacología , Citocinas/farmacología , Inmunoterapia/métodos , Enfermedad de Newcastle/inmunología , Virus de la Enfermedad de Newcastle/inmunología , Viroterapia Oncolítica/métodos , Animales , Anticuerpos Monoclonales Humanizados/farmacología , Antígeno CTLA-4 , Línea Celular Tumoral , Modelos Animales de Enfermedad , Femenino , Humanos , Melanoma , Ratones , Ratones Endogámicos C57BL , Enfermedad de Newcastle/virología , Virus Oncolíticos , Microambiente Tumoral
17.
J Virol ; 94(16)2020 07 30.
Artículo en Inglés | MEDLINE | ID: mdl-32493826

RESUMEN

Humoral immune protection against influenza virus infection is mediated largely by antibodies against hemagglutinin (HA) and neuraminidase (NA), the two major glycoproteins on the virus surface. While influenza virus vaccination efforts have focused mainly on HA, NA-based immunity has been shown to reduce disease severity and provide heterologous protection. Current seasonal vaccines do not elicit strong anti-NA responses-in part due to the immunodominance of the HA protein. Here, we demonstrate that by swapping the 5' and 3' terminal packaging signals of the HA and NA genomic segments, which contain the RNA promoters, we are able to rescue influenza viruses that express more NA and less HA. Vaccination with formalin-inactivated "rewired" viruses significantly enhances the anti-NA antibody response compared to vaccination with unmodified viruses. Passive transfer of sera from mice immunized with rewired virus vaccines shows better protection against influenza virus challenge. Our results provide evidence that the immunodominance of HA stems in part from its abundance on the viral surface, and that rewiring viral packaging signals-thereby increasing the NA content on viral particles-is a viable strategy for improving the immunogenicity of NA in an influenza virus vaccine.IMPORTANCE Influenza virus infections are a major source of morbidity and mortality worldwide. Increasing evidence highlights neuraminidase as a potential vaccination target. This report demonstrates the efficacy of rewiring influenza virus packaging signals for creating vaccines with more neuraminidase content which provide better neuraminidase (NA)-based protection.


Asunto(s)
Virus de la Influenza A/genética , Neuraminidasa/genética , Neuraminidasa/inmunología , Animales , Anticuerpos Antivirales/inmunología , Protección Cruzada , Reacciones Cruzadas , Femenino , Expresión Génica/genética , Regulación Viral de la Expresión Génica/genética , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Hemaglutininas/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Subtipo H5N1 del Virus de la Influenza A/genética , Vacunas contra la Influenza/inmunología , Gripe Humana/virología , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/virología , ARN/genética , Vacunación/métodos
19.
Mol Ther ; 28(7): 1569-1584, 2020 07 08.
Artículo en Inglés | MEDLINE | ID: mdl-32359470

RESUMEN

Influenza viruses are respiratory pathogens of public health concern worldwide with up to 650,000 deaths occurring each year. Seasonal influenza virus vaccines are employed to prevent disease, but with limited effectiveness. Development of a universal influenza virus vaccine with the potential to elicit long-lasting, broadly cross-reactive immune responses is necessary for reducing influenza virus prevalence. In this study, we have utilized lipid nanoparticle-encapsulated, nucleoside-modified mRNA vaccines to intradermally deliver a combination of conserved influenza virus antigens (hemagglutinin stalk, neuraminidase, matrix-2 ion channel, and nucleoprotein) and induce strong immune responses with substantial breadth and potency in a murine model. The immunity conferred by nucleoside-modified mRNA-lipid nanoparticle vaccines provided protection from challenge with pandemic H1N1 virus at 500 times the median lethal dose after administration of a single immunization, and the combination vaccine protected from morbidity at a dose of 50 ng per antigen. The broad protective potential of a single dose of combination vaccine was confirmed by challenge with a panel of group 1 influenza A viruses. These findings support the advancement of nucleoside-modified mRNA-lipid nanoparticle vaccines expressing multiple conserved antigens as universal influenza virus vaccine candidates.


Asunto(s)
Antígenos Virales/genética , Subtipo H1N1 del Virus de la Influenza A/inmunología , Nucleósidos/química , Infecciones por Orthomyxoviridae/prevención & control , Vacunas Sintéticas/administración & dosificación , Animales , Anticuerpos Antivirales/metabolismo , Antígenos Virales/química , Modelos Animales de Enfermedad , Glicoproteínas Hemaglutininas del Virus de la Influenza/química , Glicoproteínas Hemaglutininas del Virus de la Influenza/genética , Vacunas contra la Influenza/administración & dosificación , Vacunas contra la Influenza/química , Vacunas contra la Influenza/inmunología , Inyecciones Intradérmicas , Liposomas , Ratones , Células 3T3 NIH , Nanopartículas , Neuraminidasa/química , Neuraminidasa/genética , Proteínas de la Nucleocápside/química , Proteínas de la Nucleocápside/genética , Infecciones por Orthomyxoviridae/inmunología , Vacunas Sintéticas/química , Vacunas Sintéticas/inmunología , Vacunas de ARNm
20.
J Virol ; 93(12)2019 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-30944178

RESUMEN

Influenza B viruses cause seasonal epidemics and are a considerable burden to public health. However, protection by current seasonal vaccines is suboptimal due to the antigenic changes of the circulating strains. In this study, we report a novel universal influenza B virus vaccination strategy based on "mosaic" hemagglutinins. We generated mosaic B hemagglutinins by replacing the major antigenic sites of the type B hemagglutinin with corresponding sequences from exotic influenza A hemagglutinins and expressed them as soluble trimeric proteins. Sequential vaccination with recombinant mosaic B hemagglutinin proteins conferred cross-protection against both homologous and heterologous influenza B virus strains in the mouse model. Of note, we rescued recombinant influenza B viruses expressing mosaic B hemagglutinins, which could serve as the basis for a universal influenza B virus vaccine.IMPORTANCE This work reports a universal influenza B virus vaccination strategy based on focusing antibody responses to conserved head and stalk epitopes of the hemagglutinin. Recombinant mosaic influenza B hemagglutinin proteins and recombinant viruses have been generated as novel vaccine candidates. This vaccine strategy provided broad cross-protection in the mouse model. Our findings will inform and drive development toward a more effective influenza B virus vaccine.


Asunto(s)
Virus de la Influenza B/inmunología , Vacunas contra la Influenza/uso terapéutico , Gripe Humana/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Protección Cruzada/inmunología , Reacciones Cruzadas/inmunología , Perros , Epítopos/inmunología , Femenino , Células HEK293 , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Hemaglutininas/inmunología , Humanos , Inmunización Pasiva , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H5N1 del Virus de la Influenza A/inmunología , Células de Riñón Canino Madin Darby , Ratones , Ratones Endogámicos BALB C , Infecciones por Orthomyxoviridae/virología , Vacunación/métodos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda