Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
2.
Sensors (Basel) ; 21(5)2021 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-33800324

RESUMEN

Electrocardiogram (ECG) signals are time series data that are acquired by time change. A problem with these signals is that comparison data that have the same size as the registration data must be acquired every time. A network model of an auxiliary classifier based generative adversarial neural network that is capable of generating synthetic ECG signals is proposed to resolve the data size inconsistency problem. After constructing comparison data with various combinations of the real and generated synthetic ECG signal cycles, a user recognition experiment was performed by applying them to an ensemble network of parallel structure. Recognition performance of 98.5% was demonstrated when five cycles of real ECG signals were used. Moreover, 98.7% and 97% accuracies were provided when the first cycle of synthetic ECG signals and the fourth cycle of real ECG signals were repetitively used as the last cycle, respectively, in addition to the four cycles of real ECG. When two cycles of synthetic ECG signals were used with three cycles of real ECG signals, 97.2% accuracy was shown. When the last third cycle was repeatedly used with the three cycles of real ECG signals, the accuracy was 96%, which was 1.2% lower than the performance obtained while using the synthetic ECG. Therefore, even if the size of the registration data and that of the comparison data are not consistent, the generated synthetic ECG signals can be applied to a real life environment, because a high recognition performance is demonstrated when they are applied to an ensemble network of parallel structure.


Asunto(s)
Algoritmos , Electrocardiografía , Redes Neurales de la Computación , Procesamiento de Señales Asistido por Computador
3.
Sensors (Basel) ; 21(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396816

RESUMEN

Driver-centered infotainment and telematics services are provided for intelligent vehicles that improve driver convenience. Driver-centered services are performed after identification, and a biometrics system using bio-signals is applied. The electrocardiogram (ECG) signal acquired in the driving environment needs to be normalized because the intensity of noise is strong because the driver's motion artifact is included. Existing time, frequency, and phase normalization methods have a problem of distorting P, QRS Complexes, and T waves, which are morphological features of an ECG, or normalizing to signals containing noise. In this paper, we propose an adaptive threshold filter-based driver identification system to solve the problem of distortion of the ECG morphological features when normalized and the motion artifact noise of the ECG that causes the identification performance deterioration in the driving environment. The experimental results show that the proposed method improved the average similarity compared to the results without normalization. The identification performance was also improved compared to the results before normalization.

4.
Sensors (Basel) ; 20(24)2020 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-33322723

RESUMEN

Although biometrics systems using an electrocardiogram (ECG) have been actively researched, there is a characteristic that the morphological features of the ECG signal are measured differently depending on the measurement environment. In general, post-exercise ECG is not matched with the morphological features of the pre-exercise ECG because of the temporary tachycardia. This can degrade the user recognition performance. Although normalization studies have been conducted to match the post- and pre-exercise ECG, limitations related to the distortion of the P wave, QRS complexes, and T wave, which are morphological features, often arise. In this paper, we propose a method for matching pre- and post-exercise ECG cycles based on time and frequency fusion normalization in consideration of morphological features and classifying users with high performance by an optimized system. One cycle of post-exercise ECG is expanded by linear interpolation and filtered with an optimized frequency through the fusion normalization method. The fusion normalization method aims to match one post-exercise ECG cycle to one pre-exercise ECG cycle. The experimental results show that the average similarity between the pre- and post-exercise states improves by 25.6% after normalization, for 30 ECG cycles. Additionally, the normalization algorithm improves the maximum user recognition performance from 96.4 to 98%.


Asunto(s)
Electrocardiografía , Prueba de Esfuerzo , Algoritmos , Arritmias Cardíacas , Biometría , Humanos , Procesamiento de Señales Asistido por Computador
5.
Sensors (Basel) ; 19(4)2019 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-30813332

RESUMEN

This paper conducts a comparative analysis of deep models in biometrics using scalogram of electrocardiogram (ECG). A scalogram is the absolute value of the continuous wavelet transform coefficients of a signal. Since biometrics using ECG signals are sensitive to noise, studies have been conducted by transforming signals into a frequency domain that is efficient for analyzing noisy signals. By transforming the signal from the time domain to the frequency domain using the wavelet, the 1-D signal becomes a 2-D matrix, and it could be analyzed at multiresolution. However, this process makes signal analysis morphologically complex. This means that existing simple classifiers could perform poorly. We investigate the possibility of using the scalogram of ECG as input to deep convolutional neural networks of deep learning, which exhibit optimal performance for the classification of morphological imagery. When training data is small or hardware is insufficient for training, transfer learning can be used with pretrained deep models to reduce learning time, and classify it well enough. In this paper, AlexNet, GoogLeNet, and ResNet are considered as deep models of convolutional neural network. The experiments are performed on two databases for performance evaluation. Physikalisch-Technische Bundesanstalt (PTB)-ECG is a well-known database, while Chosun University (CU)-ECG is directly built for this study using the developed ECG sensor. The ResNet was 0.73%-0.27% higher than AlexNet or GoogLeNet on PTB-ECG-and the ResNet was 0.94%-0.12% higher than AlexNet or GoogLeNet on CU-ECG.


Asunto(s)
Biometría/métodos , Electrocardiografía/métodos , Aprendizaje Profundo , Humanos
6.
Sensors (Basel) ; 18(11)2018 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-30453697

RESUMEN

We herein propose an EigenECG Network (EECGNet) based on the principal component analysis network (PCANet) for the personal identification of electrocardiogram (ECG) from human biosignal data. The EECGNet consists of three stages. In the first stage, ECG signals are preprocessed by normalization and spike removal. The R peak points in the preprocessed ECG signals are detected. Subsequently, ECG signals are transformed into two-dimensional images to use as the input to the EECGNet. Further, we perform patch-mean removal and PCA algorithm similar to the PCANet from the transformed two-dimensional images. The second stage is almost the same as the first stage, where the mean removal and PCA process are repeatedly performed in the cascaded network. In the final stage, the binary quantization, block sliding, and histogram computation are performed. Thus, this EECGNet performs well without the use of back-propagation to obtain features from the visual content. We constructed a Chosun University (CU)-ECG database from an ECG sensor implemented by ourselves. Further, we used the well-known MIT Beth Israel Hospital (BIH) ECG database. The experimental results clearly reveal the good performance and effectiveness of the proposed method compared with conventional algorithms such as PCA, auto-encoder (AE), extreme learning machine (ELM), and ensemble extreme learning machine (EELM).


Asunto(s)
Electrocardiografía , Registros , Adulto , Anciano , Anciano de 80 o más Años , Algoritmos , Bases de Datos Factuales , Femenino , Corazón/fisiología , Humanos , Masculino , Persona de Mediana Edad , Análisis de Componente Principal , Procesamiento de Señales Asistido por Computador
7.
J Biomed Biotechnol ; 2012: 614146, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22919273

RESUMEN

Biometrics verification can be efficiently used for intrusion detection and intruder identification in video surveillance systems. Biometrics techniques can be largely divided into traditional and the so-called soft biometrics. Whereas traditional biometrics deals with physical characteristics such as face features, eye iris, and fingerprints, soft biometrics is concerned with such information as gender, national origin, and height. Traditional biometrics is versatile and highly accurate. But it is very difficult to get traditional biometric data from a distance and without personal cooperation. Soft biometrics, although featuring less accuracy, can be used much more freely though. Recently, many researchers have been made on human identification using soft biometrics data collected from a distance. In this paper, we use both traditional and soft biometrics for human identification and propose a framework for solving such problems as lighting, occlusion, and shadowing.


Asunto(s)
Biometría/métodos , Recolección de Datos , Antropología Forense/métodos , Antropología Forense/estadística & datos numéricos , Grabación en Video/métodos , Grabación en Video/estadística & datos numéricos , Color , Ambiente , Cara , Femenino , Marcha , Humanos , Masculino
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda