Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Blood ; 141(25): 3109-3121, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-36947859

RESUMEN

Inhibitors of complement and coagulation are present in the saliva of a variety of blood-feeding arthropods that transmit parasitic and viral pathogens. Here, we describe the structure and mechanism of action of the sand fly salivary protein lufaxin, which inhibits the formation of the central alternative C3 convertase (C3bBb) and inhibits coagulation factor Xa (fXa). Surface plasmon resonance experiments show that lufaxin stabilizes the binding of serine protease factor B (FB) to C3b but does not detectably bind either C3b or FB alone. The crystal structure of the inhibitor reveals a novel all ß-sheet fold containing 2 domains. A structure of the lufaxin-C3bB complex obtained via cryo-electron microscopy (EM) shows that lufaxin binds via its N-terminal domain at an interface containing elements of both C3b and FB. By occupying this spot, the inhibitor locks FB into a closed conformation in which proteolytic activation of FB by FD cannot occur. C3bB-bound lufaxin binds fXa at a separate site in its C-terminal domain. In the cryo-EM structure of a C3bB-lufaxin-fXa complex, the inhibitor binds to both targets simultaneously, and lufaxin inhibits fXa through substrate-like binding of a C-terminal peptide at the active site as well as other interactions in this region. Lufaxin inhibits complement activation in ex vivo models of atypical hemolytic uremic syndrome (aHUS) and paroxysmal nocturnal hemoglobinuria (PNH) as well as thrombin generation in plasma, providing a rationale for the development of a bispecific inhibitor to treat complement-related diseases in which thrombosis is a prominent manifestation.


Asunto(s)
Coagulación Sanguínea , Factor B del Complemento , Microscopía por Crioelectrón , Factor B del Complemento/química , Factor B del Complemento/metabolismo , Activación de Complemento , Serina Endopeptidasas , Complemento C3b/química
3.
Bioorg Med Chem Lett ; 26(8): 1919-24, 2016 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-26979158

RESUMEN

Serotonin 5-HT3 receptors are involved in various brain functions including as an emesis target during cancer chemotherapy. We report here the development of (S)-2,3-dimethoxy-5-(3'-[(18)F]fluoropropyl)-N-(1-azabicyclo[2.2.2]oct-3-yl)benzamide ([(18)F]fesetron) as a potential PET imaging agent for serotonin 5-HT3 receptors. By radiolabeling((S)-2,3-dimethoxy-5-(3'-tosyloxypropyl)-N-(1-azabicyclo[2.2.2]oct-3-yl)benzamide) with fluorine-18, (S)-[(18)F]fesetron was obtained in 5 to 10% decay-corrected yields and with specific activities >74GBq/µmol at the end of radiosynthesis. PET imaging in rats showed low uptake of [(18)F]fesetron in the brain with retention of binding in the striatal and cerebellar regions. Using colliculi as a reference region, ratios were 3.4 for striata and 2.5 for cerebellum. Ex vivo brain PET analysis displayed binding of [(18)F]fesetron in the hippocampus, striatum and cerebellar regions. Cerebellar regions corresponded to area postrema and nucleus tract solitaris known to contain 5-HT3 receptors. Dorsal hippocampus showed the highest uptake with ratio of >17 with respect to colliculi, while area postrema and striata had ratios of >10. Thus, [(18)F]fesetron exhibited a unique binding profile to rat brain regions known to contain significant amounts of serotonin 5-HT3 receptors. However, the very low brain uptake limits its usefulness as a PET radiotracer in this animal model.


Asunto(s)
Compuestos de Azabiciclo/síntesis química , Compuestos de Azabiciclo/metabolismo , Benzamidas/síntesis química , Benzamidas/metabolismo , Encéfalo/metabolismo , Tomografía de Emisión de Positrones/métodos , Receptores de Serotonina 5-HT3/metabolismo , Animales , Compuestos de Azabiciclo/administración & dosificación , Compuestos de Azabiciclo/química , Compuestos de Azabiciclo/farmacocinética , Benzamidas/administración & dosificación , Benzamidas/química , Benzamidas/farmacocinética , Masculino , Trazadores Radiactivos , Ratas , Ratas Sprague-Dawley
4.
bioRxiv ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38854038

RESUMEN

Complement-mediated hemolytic uremic syndrome (CM-HUS) is a thrombotic microangiopathy characterized by germline variants or acquired antibodies to complement proteins and regulators. Building upon our prior experience with the modified Ham (mHam) assay for ex vivo diagnosis of complementopathies, we have developed an array of cell-based complement "biosensors'' by selective removal of complement regulatory proteins (CD55 and CD59, CD46, or a combination thereof) in an autonomously bioluminescent HEK293 cell line. These biosensors can be used as a sensitive method for diagnosing CM-HUS and monitoring therapeutic complement blockade. Using specific complement pathway inhibitors, this model identifies IgM-driven classical pathway stimulus during both acute disease and in many patients during clinical remission. This provides a potential explanation for ~50% of CM-HUS patients who lack an alternative pathway "driving" variant and suggests at least a subset of CM-HUS is characterized by a breakdown of IgM immunologic tolerance. Key Points: CM-HUS has a CP stimulus driven by polyreactive IgM, addressing the mystery of why 40% of CM-HUS lack complement specific variantsComplement biosensors and the bioluminescent mHam can be used to aid in diagnosis of CM-HUS and monitor complement inhibitor therapy.

5.
Int J Nanomedicine ; 15: 31-47, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32021163

RESUMEN

PURPOSE: Using our chelate-free, heat-induced radiolabeling (HIR) method, we show that a wide range of metals, including those with radioactive isotopologues used for diagnostic imaging and radionuclide therapy, bind to the Feraheme (FH) nanoparticle (NP), a drug approved for the treatment of iron anemia. MATERIAL AND METHODS: FH NPs were heated (120°C) with nonradioactive metals, the resulting metal-FH NPs were characterized by inductively coupled plasma mass spectrometry (ICP-MS), dynamic light scattering (DLS), and r1 and r2 relaxivities obtained by nuclear magnetic relaxation spectrometry (NMRS). In addition, the HIR method was performed with [90Y]Y3+, [177Lu]Lu3+, and [64Cu]Cu2+, the latter with an HIR technique optimized for this isotope. Optimization included modifying reaction time, temperature, and vortex technique. Radiochemical yield (RCY) and purity (RCP) were measured using size exclusion chromatography (SEC) and thin-layer chromatography (TLC). RESULTS: With ICP-MS, metals incorporated into FH at high efficiency were bismuth, indium, yttrium, lutetium, samarium, terbium and europium (>75% @ 120 oC). Incorporation occurred with a small (less than 20%) but statistically significant increases in size and the r2 relaxivity. An improved HIR technique (faster heating rate and improved vortexing) was developed specifically for copper and used with the HIR technique and [64Cu]Cu2+. Using SEC and TLC analyses with [90Y]Y3+, [177Lu]Lu3+ and [64Cu]Cu2+, RCYs were greater than 85% and RCPs were greater than 95% in all cases. CONCLUSION: The chelate-free HIR technique for binding metals to FH NPs has been extended to a range of metals with radioisotopes used in therapeutic and diagnostic applications. Cations with f-orbital electrons, more empty d-orbitals, larger radii, and higher positive charges achieved higher values of RCY and RCP in the HIR reaction. The ability to use a simple heating step to bind a wide range of metals to the FH NP, a widely available approved drug, may allow this NP to become a platform for obtaining radiolabeled nanoparticles in many settings.


Asunto(s)
Óxido Ferrosoférrico/química , Marcaje Isotópico/métodos , Nanopartículas/química , Radioisótopos/química , Quelantes/química , Cromatografía en Gel , Radioisótopos de Cobre/química , Dispersión Dinámica de Luz , Lutecio/química , Espectroscopía de Resonancia Magnética , Radiofármacos/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda