Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 350
Filtrar
1.
Clin Microbiol Rev ; 37(1): e0010322, 2024 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-38095438

RESUMEN

Wastewater-based surveillance (WBS) has undergone dramatic advancement in the context of the coronavirus disease 2019 (COVID-19) pandemic. The power and potential of this platform technology were rapidly realized when it became evident that not only did WBS-measured SARS-CoV-2 RNA correlate strongly with COVID-19 clinical disease within monitored populations but also, in fact, it functioned as a leading indicator. Teams from across the globe rapidly innovated novel approaches by which wastewater could be collected from diverse sewersheds ranging from wastewater treatment plants (enabling community-level surveillance) to more granular locations including individual neighborhoods and high-risk buildings such as long-term care facilities (LTCF). Efficient processes enabled SARS-CoV-2 RNA extraction and concentration from the highly dilute wastewater matrix. Molecular and genomic tools to identify, quantify, and characterize SARS-CoV-2 and its various variants were adapted from clinical programs and applied to these mixed environmental systems. Novel data-sharing tools allowed this information to be mobilized and made immediately available to public health and government decision-makers and even the public, enabling evidence-informed decision-making based on local disease dynamics. WBS has since been recognized as a tool of transformative potential, providing near-real-time cost-effective, objective, comprehensive, and inclusive data on the changing prevalence of measured analytes across space and time in populations. However, as a consequence of rapid innovation from hundreds of teams simultaneously, tremendous heterogeneity currently exists in the SARS-CoV-2 WBS literature. This manuscript provides a state-of-the-art review of WBS as established with SARS-CoV-2 and details the current work underway expanding its scope to other infectious disease targets.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , COVID-19/epidemiología , Monitoreo Epidemiológico Basado en Aguas Residuales , ARN Viral , Aguas Residuales
2.
Plant J ; 119(3): 1386-1399, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38843154

RESUMEN

Ghost introgression, or the transfer of genetic material from extinct or unsampled lineages to sampled species, has attracted much attention. However, conclusive evidence for ghost introgression, especially in plant species, remains scarce. Here, we newly assembled chromosome-level genomes for both Carya sinensis and Carya cathayensis, and additionally re-sequenced the whole genomes of 43 C. sinensis individuals as well as 11 individuals representing 11 diploid hickory species. These genomic datasets were used to investigate the reticulation and bifurcation patterns within the genus Carya (Juglandaceae), with a particular focus on the beaked hickory C. sinensis. By combining the D-statistic and BPP methods, we obtained compelling evidence that supports the occurrence of ghost introgression in C. sinensis from an extinct ancestral hickory lineage. This conclusion was reinforced through the phylogenetic network analysis and a genome scan method VolcanoFinder, the latter of which can detect signatures of adaptive introgression from unknown donors. Our results not only dispel certain misconceptions about the phylogenetic history of C. sinensis but also further refine our understanding of Carya's biogeography via divergence estimates. Moreover, the successful integration of the D-statistic and BPP methods demonstrates their efficacy in facilitating a more precise identification of introgression types.


Asunto(s)
Introgresión Genética , Genoma de Planta , Filogenia , Genoma de Planta/genética , Genómica , Asia Oriental , Pueblos del Este de Asia
3.
Syst Biol ; 73(1): 207-222, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38224495

RESUMEN

In recent years, the study of hybridization and introgression has made significant progress, with ghost introgression-the transfer of genetic material from extinct or unsampled lineages to extant species-emerging as a key area for research. Accurately identifying ghost introgression, however, presents a challenge. To address this issue, we focused on simple cases involving 3 species with a known phylogenetic tree. Using mathematical analyses and simulations, we evaluated the performance of popular phylogenetic methods, including HyDe and PhyloNet/MPL, and the full-likelihood method, Bayesian Phylogenetics and Phylogeography (BPP), in detecting ghost introgression. Our findings suggest that heuristic approaches relying on site-pattern counts or gene-tree topologies struggle to differentiate ghost introgression from introgression between sampled non-sister species, frequently leading to incorrect identification of donor and recipient species. The full-likelihood method BPP uses multilocus sequence alignments directly-hence taking into account both gene-tree topologies and branch lengths, by contrast, is capable of detecting ghost introgression in phylogenomic datasets. We analyzed a real-world phylogenomic dataset of 14 species of Jaltomata (Solanaceae) to showcase the potential of full-likelihood methods for accurate inference of introgression.


Asunto(s)
Clasificación , Filogenia , Clasificación/métodos , Introgresión Genética , Hibridación Genética , Filogeografía/métodos , Simulación por Computador
4.
Brain ; 147(1): 163-176, 2024 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-37740498

RESUMEN

Microglia-mediated neuroinflammation contributes to acute demyelination in neuromyelitis optica spectrum disorders (NMOSD). Soluble triggering receptor expressed on myeloid cells 2 (sTREM2) in the CSF has been associated with microglial activation in several neurodegenerative diseases. However, the basis for this immune-mediated attack and the pathophysiological role of sTREM2 in NMOSD remain to be elucidated. Here, we performed Mendelian randomization analysis and identified a genetic association between increased CSF sTREM2 and NMOSD risk. CSF sTREM2 was elevated in patients with NMOSD and was positively correlated with neural injury and other neuroinflammation markers. Single-cell RNA sequencing of human macrophage/microglia-like cells in CSF, a proxy for microglia, showed that increased CSF sTREM2 was positively associated with microglial dysfunction in patients with NMOSD. Furthermore, we demonstrated that sTREM2 is a reliable biomarker of microglial activation in a mouse model of NMOSD. Using unbiased transcriptomic and lipidomic screens, we identified that excessive activation, overwhelmed phagocytosis of myelin debris, suppressed lipid metabolism and enhanced glycolysis underlie sTREM2-mediated microglial dysfunction, possibly through the nuclear factor kappa B (NF-κB) signalling pathway. These molecular and cellular findings provide a mechanistic explanation for the genetic association between CSF sTREM2 and NMOSD risk and indicate that sTREM2 could be a potential biomarker of NMOSD progression and a therapeutic target for microglia-mediated neuroinflammation.


Asunto(s)
Enfermedad de Alzheimer , Neuromielitis Óptica , Animales , Ratones , Humanos , Microglía/metabolismo , Enfermedad de Alzheimer/metabolismo , Neuromielitis Óptica/genética , Neuromielitis Óptica/metabolismo , Enfermedades Neuroinflamatorias , Biomarcadores/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética
5.
Clin Infect Dis ; 78(6): 1522-1530, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38530249

RESUMEN

BACKGROUND: Asymptomatic SARS-CoV-2 infection in children is highly prevalent but its acute and chronic implications have been minimally described. METHODS: In this controlled case-ascertained household transmission study, we recruited asymptomatic children <18 years with SARS-CoV-2 nucleic acid testing performed at 12 tertiary care pediatric institutions in Canada and the United States. We attempted to recruit all test-positive children and 1 to 3 test-negative, site-matched controls. After 14 days' follow-up we assessed the clinical (ie, symptomatic) and combined (ie, test-positive, or symptomatic) secondary attack rates (SARs) among household contacts. Additionally, post-COVID-19 condition (PCC) was assessed in SARS-CoV-2-positive participating children after 90 days' follow-up. RESULTS: A total of 111 test-positive and 256 SARS-CoV-2 test-negative asymptomatic children were enrolled between January 2021 and April 2022. After 14 days, excluding households with co-primary cases, the clinical SAR among household contacts of SARS-CoV-2-positive and -negative index children was 10.6% (19/179; 95% CI: 6.5%-16.1%) and 2.0% (13/663; 95% CI: 1.0%-3.3%), respectively (relative risk = 5.4; 95% CI: 2.7-10.7). In households with a SARS-CoV-2-positive index child, age <5 years, being pre-symptomatic (ie, developed symptoms after test), and testing positive during Omicron and Delta circulation periods (vs earlier) were associated with increased clinical and combined SARs among household contacts. Among 77 asymptomatic SARS-CoV-2-infected children with 90-day follow-up, 6 (7.8%; 95% CI: 2.9%-16.2%) reported PCC. CONCLUSIONS: Asymptomatic SARS-CoV-2-infected children, especially those <5 years, are important contributors to household transmission, with 1 in 10 exposed household contacts developing symptomatic illness within 14 days. Asymptomatic SARS-CoV-2-infected children may develop PCC.


Asunto(s)
Infecciones Asintomáticas , COVID-19 , Composición Familiar , SARS-CoV-2 , Humanos , COVID-19/transmisión , COVID-19/diagnóstico , COVID-19/epidemiología , Niño , Estudios Prospectivos , Masculino , Femenino , Canadá/epidemiología , Preescolar , SARS-CoV-2/aislamiento & purificación , Infecciones Asintomáticas/epidemiología , Estados Unidos/epidemiología , Lactante , Adolescente , Estudios de Casos y Controles
6.
J Neuroinflammation ; 21(1): 195, 2024 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-39097747

RESUMEN

Chronic cerebral hypoperfusion (CCH), a disease afflicting numerous individuals worldwide, is a primary cause of cognitive deficits, the pathogenesis of which remains poorly understood. Bruton's tyrosine kinase inhibition (BTKi) is considered a promising strategy to regulate inflammatory responses within the brain, a crucial process that is assumed to drive ischemic demyelination progression. However, the potential role of BTKi in CCH has not been investigated so far. In the present study, we elucidated potential therapeutic roles of BTK in both in vitro hypoxia and in vivo ischemic demyelination model. We found that cerebral hypoperfusion induced white matter injury, cognitive impairments, microglial BTK activation, along with a series of microglia responses associated with inflammation, oxidative stress, mitochondrial dysfunction, and ferroptosis. Tolebrutinib treatment suppressed both the activation of microglia and microglial BTK expression. Meanwhile, microglia-related inflammation and ferroptosis processes were attenuated evidently, contributing to lower levels of disease severity. Taken together, BTKi ameliorated white matter injury and cognitive impairments induced by CCH, possibly via skewing microglia polarization towards anti-inflammatory and homeostatic phenotypes, as well as decreasing microglial oxidative stress damage and ferroptosis, which exhibits promising therapeutic potential in chronic cerebral hypoperfusion-induced demyelination.


Asunto(s)
Agammaglobulinemia Tirosina Quinasa , Sustancia Blanca , Animales , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Agammaglobulinemia Tirosina Quinasa/metabolismo , Masculino , Ratones , Sustancia Blanca/efectos de los fármacos , Sustancia Blanca/patología , Sustancia Blanca/metabolismo , Enfermedades Neuroinflamatorias/tratamiento farmacológico , Enfermedades Neuroinflamatorias/metabolismo , Enfermedades Neuroinflamatorias/patología , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Isquemia Encefálica/tratamiento farmacológico , Isquemia Encefálica/patología , Isquemia Encefálica/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Enfermedad Crónica
7.
Brain Behav Immun ; 119: 416-430, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38636563

RESUMEN

The role of microglia in triggering the blood-brain barrier (BBB) impairment and white matter damage after chronic cerebral hypoperfusion is unclear. Here we demonstrated that the vessel-adjacent microglia were specifically activated by the leakage of plasma low-density lipoprotein (LDL), which led to BBB breakdown and ischemic demyelination. Interestingly, we found that LDL stimulation enhanced microglial phagocytosis, causing excessive engulfment of myelin debris and resulting in an overwhelming lipid burden in microglia. Surprisingly, these lipid-laden microglia exhibited a suppressed profile of inflammatory response and compromised pro-regenerative properties. Microglia-specific knockdown of LDLR or systematic medication lowering circulating LDL-C showed protective effects against ischemic demyelination. Overall, our findings demonstrated that LDL-stimulated vessel-adjacent microglia possess a disease-specific molecular signature, characterized by suppressed regenerative properties, which is associated with the propagation of demyelination during ischemic white matter damage.


Asunto(s)
Barrera Hematoencefálica , Isquemia Encefálica , Lipoproteínas LDL , Microglía , Sustancia Blanca , Microglía/metabolismo , Animales , Sustancia Blanca/metabolismo , Sustancia Blanca/patología , Ratones , Lipoproteínas LDL/metabolismo , Lipoproteínas LDL/farmacología , Isquemia Encefálica/metabolismo , Barrera Hematoencefálica/metabolismo , Masculino , Ratones Endogámicos C57BL , Enfermedades Desmielinizantes/metabolismo , Enfermedades Desmielinizantes/patología , Fagocitosis/fisiología , Vaina de Mielina/metabolismo
8.
Syst Biol ; 72(1): 35-49, 2023 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-35799362

RESUMEN

The species studied in any evolutionary investigation generally constitute a small proportion of all the species currently existing or that have gone extinct. It is therefore likely that introgression, which is widespread across the tree of life, involves "ghosts," that is, unsampled, unknown, or extinct lineages. However, the impact of ghost introgression on estimations of species trees has rarely been studied and is poorly understood. Here, we use mathematical analysis and simulations to examine the robustness of species tree methods based on the multispecies coalescent model to introgression from a ghost or extant lineage. We found that many results originally obtained for introgression between extant species can easily be extended to ghost introgression, such as the strongly interactive effects of incomplete lineage sorting (ILS) and introgression on the occurrence of anomalous gene trees. The relative performance of the summary species tree method (ASTRAL) and the full-likelihood method (*BEAST) varies under different introgression scenarios, with the former being more robust to gene flow between nonsister species, whereas the latter performing better under certain conditions of ghost introgression. When an outgroup ghost (defined as a lineage that diverged before the most basal species under investigation) acts as the donor of the introgressed genes, the time of root divergence among the investigated species generally was overestimated, whereas ingroup introgression, as commonly perceived, can only lead to underestimation. In many cases of ingroup introgression that may or may not involve ghost lineages, the stronger the ILS, the higher the accuracy achieved in estimating the time of root divergence, although the topology of the species tree is more prone to be biased by the effect of introgression. [Anomalous gene trees; divergence time; ghost introgression; multispecies coalescent; simulation; species tree.].


Asunto(s)
Evolución Biológica , Flujo Génico , Filogenia , Simulación por Computador , Probabilidad , Modelos Genéticos
9.
Cell Commun Signal ; 22(1): 102, 2024 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-38326807

RESUMEN

Protein arginine methyltransferase 1 (PRMT1), the predominant type I protein arginine methyltransferase, plays a crucial role in normal biological functions by catalyzing the methylation of arginine side chains, specifically monomethylarginine (MMA) and asymmetric dimethylarginine (ADMA), within proteins. Recent investigations have unveiled an association between dysregulated PRMT1 expression and the initiation and progression of tumors, significantly impacting patient prognosis, attributed to PRMT1's involvement in regulating various facets of tumor cell biology, including DNA damage repair, transcriptional and translational regulation, as well as signal transduction. In this review, we present an overview of recent advancements in PRMT1 research across different tumor types, with a specific focus on its contributions to tumor cell proliferation, metastasis, invasion, and drug resistance. Additionally, we expound on the dynamic functions of PRMT1 during distinct stages of cancer progression, elucidating its unique regulatory mechanisms within the same signaling pathway and distinguishing between its promotive and inhibitory effects. Importantly, we sought to provide a comprehensive summary and analysis of recent research progress on PRMT1 in tumors, contributing to a deeper understanding of its role in tumorigenesis, development, and potential treatment strategies.


Asunto(s)
Neoplasias , Procesamiento Proteico-Postraduccional , Humanos , Metilación , Proteína-Arginina N-Metiltransferasas/genética , Proteína-Arginina N-Metiltransferasas/metabolismo , Biología , Proteínas Represoras/metabolismo
10.
Physiol Plant ; 176(2): e14296, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38650503

RESUMEN

In Dunaliella tertiolecta, a microalga renowned for its extraordinary tolerance to high salinity levels up to 4.5 M NaCl, the mechanisms underlying its stress response have largely remained a mystery. In a groundbreaking discovery, this study identifies a choline dehydrogenase enzyme, termed DtCHDH, capable of converting choline to betaine aldehyde. Remarkably, this is the first identification of such an enzyme not just in D. tertiolecta but across the entire Chlorophyta. A 3D model of DtCHDH was constructed, and molecular docking with choline was performed, revealing a potential binding site for the substrate. The enzyme was heterologously expressed in E. coli Rosetta (DE3) and subsequently purified, achieving enzyme activity of 672.2 U/mg. To elucidate the role of DtCHDH in the salt tolerance of D. tertiolecta, RNAi was employed to knock down DtCHDH gene expression. The results indicated that the Ri-12 strain exhibited compromised growth under both high and low salt conditions, along with consistent levels of DtCHDH gene expression and betaine content. Additionally, fatty acid analysis indicated that DtCHDH might also be a FAPs enzyme, catalyzing reactions with decarboxylase activity. This study not only illuminates the role of choline metabolism in D. tertiolecta's adaptation to high salinity but also identifies a novel target for enhancing the NaCl tolerance of microalgae in biotechnological applications.


Asunto(s)
Betaína , Colina-Deshidrogenasa , Tolerancia a la Sal , Betaína/metabolismo , Tolerancia a la Sal/genética , Colina-Deshidrogenasa/metabolismo , Colina-Deshidrogenasa/genética , Colina/metabolismo , Chlorophyceae/genética , Chlorophyceae/fisiología , Chlorophyceae/enzimología , Chlorophyceae/metabolismo , Microalgas/genética , Microalgas/enzimología , Microalgas/metabolismo , Simulación del Acoplamiento Molecular , Cloruro de Sodio/farmacología
11.
Acta Pharmacol Sin ; 45(8): 1556-1570, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38632318

RESUMEN

Frizzled receptors (FZDs) are key contributors intrinsic to the Wnt signaling pathway, activation of FZDs triggering the Wnt signaling cascade is frequently observed in human tumors and intimately associated with an aggressive carcinoma phenotype. It has been shown that the abnormal expression of FZD receptors contributes to the manifestation of malignant characteristics in human tumors such as enhanced cell proliferation, metastasis, chemotherapy resistance as well as the acquisition of cancer stemness. Given the essential roles of FZD receptors in the Wnt signaling in human tumors, this review aims to consolidate the prevailing knowledge on the specific status of FZD receptors (FZD1-10) and elucidate their respective functions in tumor progression. Furthermore, we delineate the structural basis for binding of FZD and its co-receptors to Wnt, and provide a better theoretical foundation for subsequent studies on related mechanisms. Finally, we describe the existing biological classes of small molecule-based FZD inhibitors in detail in the hope that they can provide useful assistance for design and development of novel drug candidates targeted FZDs.


Asunto(s)
Antineoplásicos , Receptores Frizzled , Neoplasias , Vía de Señalización Wnt , Humanos , Receptores Frizzled/metabolismo , Receptores Frizzled/antagonistas & inhibidores , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Neoplasias/patología , Vía de Señalización Wnt/efectos de los fármacos , Antineoplásicos/uso terapéutico , Antineoplásicos/farmacología , Animales , Terapia Molecular Dirigida/métodos
12.
BMC Biol ; 21(1): 168, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37553642

RESUMEN

BACKGROUND: Autopolyploidy is a valuable model for studying whole-genome duplication (WGD) without hybridization, yet little is known about the genomic structural and functional changes that occur in autopolyploids after WGD. Cyclocarya paliurus (Juglandaceae) is a natural diploid-autotetraploid species. We generated an allele-aware autotetraploid genome, a chimeric chromosome-level diploid genome, and whole-genome resequencing data for 106 autotetraploid individuals at an average depth of 60 × per individual, along with 12 diploid individuals at an average depth of 90 × per individual. RESULTS: Autotetraploid C. paliurus had 64 chromosomes clustered into 16 homologous groups, and the majority of homologous chromosomes demonstrated similar chromosome length, gene numbers, and expression. The regions of synteny, structural variation and nonalignment to the diploid genome accounted for 81.3%, 8.8% and 9.9% of the autotetraploid genome, respectively. Our analyses identified 20,626 genes (69.18%) with four alleles and 9191 genes (30.82%) with one, two, or three alleles, suggesting post-polyploid allelic loss. Genes with allelic loss were found to occur more often in proximity to or within structural variations and exhibited a marked overlap with transposable elements. Additionally, such genes showed a reduced tendency to interact with other genes. We also found 102 genes with more than four copies in the autotetraploid genome, and their expression levels were significantly higher than their diploid counterparts. These genes were enriched in enzymes involved in stress response and plant defense, potentially contributing to the evolutionary success of autotetraploids. Our population genomic analyses suggested a single origin of autotetraploids and recent divergence (~ 0.57 Mya) from diploids, with minimal interploidy admixture. CONCLUSIONS: Our results indicate the potential for genomic and functional reorganization, which may contribute to evolutionary success in autotetraploid C. paliurus.


Asunto(s)
Duplicación de Gen , Tetraploidía , Humanos , Alelos , Poliploidía , Genómica
13.
J Neurochem ; 167(4): 489-504, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37823326

RESUMEN

Chronic cerebral hypoperfusion leads to sustained demyelination and a unique response of microglia. Triggering receptor expressed on myeloid cells 2 (Trem2), which is expressed exclusively on microglia in the central nervous system (CNS), plays an essential role in microglial response in various CNS disorders. However, the specific role of Trem2 in chronic cerebral hypoperfusion has not been elucidated. In this study, we investigated the specific role of Trem2 in a mouse model of chronic cerebral hypoperfusion induced by bilateral carotid artery stenosis (BCAS). Our results showed that chronic hypoperfusion induced white matter demyelination, microglial phagocytosis, and activation of the microglial autophagic-lysosomal pathway, accompanied by an increase in Trem2 expression. After Trem2 knockout, we observed attenuation of white matter lesions and microglial response. Trem2 deficiency also suppressed microglial phagocytosis and relieved activation of the autophagic-lysosomal pathway, leading to microglial polarization towards anti-inflammatory and homeostatic phenotypes. Furthermore, Trem2 knockout inhibited lipid droplet accumulation in microglia in vitro. Collectively, these findings suggest that Trem2 deficiency ameliorated microglial phagocytosis and autophagic-lysosomal activation in hypoperfusion-induced white matter injury, and could be a promising target for the treatment of chronic cerebral hypoperfusion.


Asunto(s)
Isquemia Encefálica , Enfermedades Desmielinizantes , Sustancia Blanca , Animales , Ratones , Sustancia Blanca/patología , Microglía/metabolismo , Fagocitosis , Isquemia Encefálica/metabolismo , Lisosomas/metabolismo , Enfermedades Desmielinizantes/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
14.
J Neuroinflammation ; 20(1): 89, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-37013543

RESUMEN

Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory demyelinating disorder of the central nervous system (CNS) triggered by autoimmune mechanisms. Microglia are activated and play a pivotal role in response to tissue injury. Triggering receptor expressed on myeloid cells 2 (TREM2) is expressed by microglia and promotes microglial activation, survival and phagocytosis. Here, we identify a critical role for TREM2 in microglial activation and function during AQP4-IgG and complement-induced demyelination. TREM2-deficient mice had more severe tissue damage and neurological impairment, as well as fewer oligodendrocytes with suppressed proliferation and maturation. The number of microglia clustering in NMOSD lesions and their proliferation were reduced in TREM2-deficient mice. Moreover, morphology analysis and expression of classic markers showed compromised activation of microglia in TREM2-deficient mice, which was accompanied by suppressed phagocytosis and degradation of myelin debris by microglia. These results overall indicate that TREM2 is a key regulator of microglial activation and exert neuroprotective effects in NMOSD demyelination.


Asunto(s)
Glicoproteínas de Membrana , Microglía , Neuromielitis Óptica , Receptores Inmunológicos , Animales , Ratones , Sistema Nervioso Central , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Microglía/metabolismo , Vaina de Mielina/metabolismo , Neuromielitis Óptica/metabolismo , Fagocitosis/genética , Receptores Inmunológicos/genética , Receptores Inmunológicos/metabolismo
15.
Opt Express ; 31(23): 37763-37777, 2023 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-38017899

RESUMEN

In recent years, deep learning (DL) has demonstrated significant potential in the inverse design of metasurfaces, and the generation of metasurfaces with customized transmission characteristics of frequency band remains a challenging and underexplored area. In this study, we propose a DL-assisted method for the inverse design of transmissive metasurfaces. The method consists of a generative adversarial network (GAN)-based graph generator, an electromagnetic response predictor, and a genetic algorithm optimizer. By integrating these components, we can obtain customized metasurfaces with desired transmission characteristics of frequency band. We demonstrate the effectiveness of the proposed method through examples of inverse-designed three-layer cascaded transmissive metasurfaces with wideband, dual-band, and stopband responses in the 8∼12 GHz frequency range. Specifically, we realize three different types of dual-band metasurfaces, namely double-wide, front-wide and rear-narrow, and front-narrow and rear-wide configurations. Additionally, we analyze the accuracy and reliability of the inverse design method by employing data from the training dataset, self-defined objectives, and bandwidth-reduced target responses scaled from the wideband type as design inputs. Quantitative evaluation is performed using metrics such as mean absolute error and average precision. The proposed method successfully achieves the desired effect as intended.

16.
BMC Cancer ; 23(1): 403, 2023 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-37142967

RESUMEN

BACKGROUND: Leukocyte immunoglobulin-like receptor subfamily B1 (LILRB1) is regarded as an inhibitory molecule. However, the importance of LILRB1 expression in glioma has not yet been determined. This investigation examined the immunological signature, clinicopathological importance and prognostic value of LILRB1 expression in glioma. METHODS: We used data from the UCSC XENA database, the Cancer Genome Atlas (TCGA) database, the Chinese Glioma Genome Atlas (CGGA) database, the STRING database, the MEXPRESS database and our clinical glioma samples to perform bioinformatic analysis and used vitro experiments to examine the predictive value and potential biological roles of LILRB1 in glioma. RESULTS: Higher LILRB1 expression was considerably present in the higher WHO grade glioma group and was linked to a poorer prognosis in patients with glioma. Gene set enrichment analysis (GSEA) revealed that LILRB1 was positively correlated with the JAK/STAT signaling pathway. LILRB1 combined with tumor mutational burden (TMB) and microsatellite instability (MSI) may be a promising indicator for the effectiveness of immunotherapy in patients with glioma. Increased LILRB1 expression was positively linked with the hypomethylation, M2 macrophage infiltration, immune checkpoints (ICPs) and M2 macrophage makers. Univariate and multivariate Cox regression analyses determined that increased LILRB1 expression was a standalone causal factor for glioma. Vitro experiments determined that LILRB1 positively enhanced the proliferation, migration and invasion in glioma cells. MRI images demonstrated that higher LILRB1 expression was related with larger tumor volume in patients with glioma. CONCLUSION: Dysregulation of LILRB1 in glioma is correlated with immune infiltration and is a standalone causal factor for glioma.


Asunto(s)
Glioma , Receptor Leucocitario Tipo Inmunoglobulina B1 , Humanos , Antígenos CD/genética , Biología Computacional , Glioma/genética , Receptor Leucocitario Tipo Inmunoglobulina B1/genética , Pacientes , Pronóstico
17.
J Pediatr Gastroenterol Nutr ; 76(2): 160-165, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-36705697

RESUMEN

OBJECTIVES: Pain is common with acute gastroenteritis (AGE) yet little is known about the severity associated with specific enteropathogens. We sought to explore the correlation of pain severity with specific enteropathogens in children with AGE. METHODS: Participants were prospectively recruited by the Alberta Provincial Pediatric EnTeric Infection TEam at 2 pediatric emergency departments (EDs) (December 2014-August 2018). Pain was measured (by child and/or caregiver) using the 11-point Verbal Numerical Rating Scale. RESULTS: We recruited 2686 participants; 46.8% (n = 1256) females, with median age 20.1 months (interquartile range 10.3, 45.3). The mean highest pain scores were 5.5 [standard deviation (SD) 3.0] and 4.2 (SD 2.9) in the 24 hours preceding the ED visit, and in the ED, respectively. Prior to ED visit, the mean highest pain scores with bacterial detection were 6.6 (SD 2.5), compared to 5.5 (SD 2.9) for single virus and 5.5 (SD 3.1) for negative stool tests. In the ED, the mean highest pain scores with bacterial detection were 5.5 (SD 2.7), compared to 4.1 (SD 2.9) for single virus and 4.2 (SD 3.0) for negative stool tests. Using multivariable modeling, factors associated with greater pain severity prior to ED visit included older age, fever, illness duration, number of diarrheal or vomiting episodes in the preceding 24 hours, and respiratory symptoms, but not enteropathogen type. CONCLUSION: Children with AGE experience significant pain, particularly when the episode is associated with the presence of a bacterial enteric pathogen. However, older age and fever appear to influence children's pain experiences more than etiologic pathogens.


Asunto(s)
Gastroenteritis , Virus , Femenino , Niño , Humanos , Lactante , Gastroenteritis/complicaciones , Gastroenteritis/diagnóstico , Diarrea/etiología , Vómitos/etiología , Vómitos/diagnóstico , Dolor/etiología , Alberta/epidemiología , Servicio de Urgencia en Hospital
18.
Appl Microbiol Biotechnol ; 107(23): 7197-7211, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37741939

RESUMEN

Tetanus toxin (TeNT) and botulinum neurotoxins (BoNTs) are neuroprotein toxins, with the latter being the most toxic known protein. They are structurally similar and contain three functional domains: an N-terminal catalytic domain (light chain), an internal heavy-chain translocation domain (HN domain), and a C-terminal heavy chain receptor binding domain (Hc domain or RBD). In this study, fusion functional domain molecules consisting of the TeNT RBD (THc) and the BoNT/A RBD (AHc) (i.e., THc-Linker-AHc and AHc-Linker-THc) were designed, prepared, and identified. The interaction of each Hc domain and the ganglioside receptor (GT1b) or the receptor synaptic vesicle glycoprotein 2 (SV2) was explored in vitro. Their immune response characteristics and protective efficacy were investigated in animal models. The recombinant THc-linker-AHc and AHc-linker-THc proteins with the binding activity had the correct size and structure, thus representing novel subunit vaccines. THc-linker-AHc and AHc-linker-THc induced high levels of specific neutralizing antibodies, and showed strong immune protective efficacy against both toxins. The high antibody titers against the two novel fusion domain molecules and against individual THc and AHc suggested that the THc and AHc domains, as antigens in the fusion functional domain molecules, do not interact with each other and retain their full key epitopes responsible for inducing neutralizing antibodies. Thus, the recombinant THc-linker-AHc and AHc-linker-THc molecules are strong and effective bivalent biotoxin vaccines, protecting against two biotoxins simultaneously. Our experimental design will be valuable to develop recombinant double-RBD fusion molecules as potent bivalent subunit vaccines against bio-toxins. KEY POINTS: • Double-RBD fusion molecules from two toxins had the correct structure and activity. • THc-linker-AHc and AHc-linker-THc efficiently protected against both biotoxins. • Such bivalent biotoxin vaccines based on the RBD are a valuable experimental design.


Asunto(s)
Toxinas Botulínicas Tipo A , Toxina Tetánica , Animales , Toxina Tetánica/genética , Toxina Tetánica/metabolismo , Toxinas Botulínicas Tipo A/genética , Toxinas Botulínicas Tipo A/metabolismo , Unión Proteica , Anticuerpos Neutralizantes , Vacunas de Subunidad/genética
19.
J Infect Dis ; 225(4): 723-732, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34432027

RESUMEN

BACKGROUND: Infections by previously underdiagnosed viruses astrovirus and sapovirus are poorly characterized compared with norovirus, the most common cause of acute gastroenteritis. METHODS: Children <18 years old with acute gastroenteritis were recruited from pediatric emergency departments in Alberta, Canada between 2014 and 2018. We described and compared the clinical course of acute gastroenteritis in children with astrovirus, sapovirus, and norovirus. RESULTS: Astrovirus was detected in 56 of 2688 (2.1%) children, sapovirus was detected in 146 of 2688 (5.4%) children, and norovirus was detected in 486 of 2688 (18.1%) children. At illness onset, ~60% of astrovirus cases experienced both diarrhea and vomiting. Among sapovirus and norovirus cases, 35% experienced diarrhea at onset and 80% of 91% (sapovirus/norovirus) vomited; however, diarrhea became more prevalent than vomiting at approximately day 4 of illness. Over the full course of illness, diarrhea was 18% (95% confidence interval [CI], 8%- 29%) more prevalent among children with astrovirus than norovirus infections and had longer duration with greater maximal events; there were a median of 4.0 fewer maximal vomiting events (95% CI, 2.0-5.0). Vomiting continued for a median of 24.8 hours longer (95% CI, 9.6-31.7) among children with sapovirus versus norovirus. Differences between these viruses were otherwise minimal. CONCLUSIONS: Sapovirus infections attended in the emergency department are more similar to norovirus than previously reported, whereas astrovirus infections have several distinguishable characteristics.


Asunto(s)
Infecciones por Caliciviridae , Gastroenteritis , Norovirus , Virus ARN , Sapovirus , Virus , Adolescente , Alberta/epidemiología , Infecciones por Caliciviridae/epidemiología , Niño , Diarrea/epidemiología , Servicio de Urgencia en Hospital , Heces , Gastroenteritis/epidemiología , Humanos , Lactante , Vómitos/epidemiología
20.
J Cell Mol Med ; 26(9): 2658-2672, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35322929

RESUMEN

The aim of this study was to investigate the effects of forkhead box protein P3 (FOXP3) intron single nucleotide variants (SNVs) in high-risk human papilloma virus (HR-HPV) infection and cervical cancer (CC) malignant lesions. We performed FOXP3 genotyping in 350 patients with CC and 350 healthy controls using the ImLDR multiple single nucleotide polymorphism genotyping technology. The heterozygous mutation TC in rs2294021 decreased the risk of HR-HPV infection and CC malignant lesions (TC vs. TT: OR = 0.71, 95% CI = 0.51-0.99); the dominant model TC+CC and allele C in rs2294021 decreased the risk of CC malignant lesions (TC+CC vs. TT: OR = 0.69, 95% CI = 0.50-0.95; C vs. T: OR = 0.78, 95% CI = 0.63-0.97). The heterozygous mutation GA, dominant model GA+AA and allele A in rs3761549 also decreased the risk of HR-HPV infection and CC malignant lesions (GA vs. GG: OR = 0.70, 95% CI = 0.51-0.96; GA+AA vs. GG: OR = 0.69, 95% CI = 0.51-0.94; A vs. G: OR = 0.75, 95% CI = 0.58-0.96). Patients with CC and HR-HPV infection carrying rs2294021 TC and rs3761549 GA had lower expression of FOXP3 protein. Haplotype analysis revealed that T-C-A decreased the risk of HR-HPV infection. Furthermore, we found a significant association between immune cells infiltration and prognosis in patients with CC. Our findings demonstrated that rs2294021 and rs3761549 variants may protect against HR-HPV and CC malignant lesions by downregulating FOXP3 and that FOXP3 was associated with immune cells infiltration, which affected the prognosis of CC.


Asunto(s)
Proteína Forkhead Box O3/genética , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Estudios de Casos y Controles , China , Femenino , Factores de Transcripción Forkhead/genética , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Genotipo , Humanos , Intrones/genética , Mutación , Infecciones por Papillomavirus/genética , Polimorfismo de Nucleótido Simple/genética , Neoplasias del Cuello Uterino/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda