RESUMEN
Multiprotein complexes have been increasingly recognized as essential functional units for a variety of cellular processes, including the protein degradation system. Selective degradation of proteins in eukaryotes is primarily conducted by the ubiquitin proteasome system. The current knowledge base, pertaining to the proteasome complexes in mammalian cells, relies largely upon information gained in the yeast system, where the 26S proteasome is hypothesized to contain a 20S multiprotein core complex and one or two 19S regulatory complexes. To date, the molecular structure of the proteasome system, the proteomic composition of the entire 26S multiprotein complexes, and the specific designated function of individual components within this essential protein degradation system in the heart remain virtually unknown. A functional proteomic approach, employing multidimensional chromatography purification combined with liquid chromatography tandem mass spectrometry and protein chemistry, was utilized to explore the murine cardiac 26S proteasome system. This article presents an overview on the subject of protein degradation in mammalian cells. In addition, this review shares the limited information that has been garnered thus far pertaining to the molecular composition, function, and regulation of this important organelle in the cardiac cells.
Asunto(s)
Miocardio/metabolismo , Orgánulos/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Animales , Ratones , Miocardio/química , Orgánulos/química , Complejo de la Endopetidasa Proteasomal/química , Proteínas/metabolismo , Ubiquitina/metabolismoRESUMEN
Mitochondrial permeability transition (MPT) pores have recently been implicated as a potential mediator of myocardial ischemic injury. Nitric oxide (NO) donors induce a powerful late phase of cardioprotection against ischemia-reperfusion injury; however, the cellular mechanisms involved are poorly understood. The role of MPT pores as a target of cardioprotective signaling pathways activated by NO has never been explored in detail. Thus mice were administered the NO donor diethylenetriamine (DETA)/NO (4 doses of 0.1 mg/kg i.v. each) 24 h before 30 min of coronary artery occlusion followed by 24 h of reperfusion. Infarct size was significantly reduced in DETA/NO-treated mice (30 +/- 2% of risk region in treated mice vs. 50 +/- 2% in control mice; P < 0.05), which demonstrates powerful cardioprotection. To examine the role of MPT pores, mice were administered atractyloside (Atr; 25 mg/kg i.v.), which induces adenine nucleotide translocase-dependent MPT, 20 min before ischemia. Atr blocked the infarct-sparing effects of DETA/NO (infarct size, 58 +/- 1 vs. 30 +/- 2% of risk region in DETA/NO; P < 0.05), whereas Atr alone had no effect. Mitochondria isolated from DETA/NO-treated mice exhibited increased resistance to Ca(2+)-induced swelling by 20 micromol/l CaCl(2) or by the higher concentration of 200 micromol/l, which suggests that cardioprotection involves decreased propensity for MPT. Preincubation of mitochondria from control hearts with 30 nmol/l of the pore inhibitor cyclosporin A prevented swelling by 200 micromol/l CaCl(2), thereby confirming that Ca(2+) induces mitochondrial swelling via MPT. In accordance with the effects on infarct size, administration of Atr to the mice significantly abrogated DETA/NO-induced protection against Ca(2+)-induced mitochondrial swelling. These phenotypic alterations were associated with an increase in the antiapoptotic protein Bcl-2, which suggests that the underlying mechanisms may involve inhibition of cell death by Bcl-2. These data suggest that a critical process during NO donor-induced cardioprotection is to prevent MPT pore opening potentially via targeting of the adenine nucleotide translocator.
Asunto(s)
Mitocondrias/metabolismo , Infarto del Miocardio/prevención & control , Miocardio/patología , Donantes de Óxido Nítrico/farmacología , Poliaminas/farmacología , Animales , Atractilósido/farmacología , Calcio/farmacología , Cardiotónicos/farmacología , Inhibidores Enzimáticos/farmacología , Masculino , Ratones , Ratones Endogámicos ICR , Mitocondrias/efectos de los fármacos , Dilatación Mitocondrial/efectos de los fármacos , Infarto del Miocardio/metabolismo , Miocardio/metabolismo , Óxido Nítrico/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Regulación hacia Arriba/efectos de los fármacosRESUMEN
Previous studies have indicated that PKC-epsilon is a central regulator of protective signal transduction in the heart. However, the signaling modules through which PKC-epsilon exerts its protective effects have only begun to be understood. We have identified a novel participant in the PKC-epsilon signaling system in cardioprotection, the nonreceptor tyrosine kinase Bmx. Functional proteomic analyses of PKC-epsilon signaling complexes identified Bmx as a member of these complexes. Subsequent studies in rabbits have indicated that Bmx is activated by nitric oxide (NO) in the heart, concomitant with the late phase of NO donor-induced protection, and provide the first analysis of Bmx expression/distribution in the setting of cardioprotection. In addition, increased expression of Bmx induced by NO donors was blocked by the same mechanism that blocked cardioprotection: inhibition of PKC with chelerythrine. These findings indicate that a novel type of PKC-tyrosine kinase module (involving Bmx) is formed in the heart and may be involved in pharmacological cardioprotection by NO donors.