Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Cell ; 150(3): 633-46, 2012 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-22863013

RESUMEN

N-methyl-d-aspartate receptors (NMDARs) are located in neuronal cell membranes at synaptic and extrasynaptic locations, where they are believed to mediate distinct physiological and pathological processes. Activation of NMDARs requires glutamate and a coagonist whose nature and impact on NMDAR physiology remain elusive. We report that synaptic and extrasynaptic NMDARs are gated by different endogenous coagonists, d-serine and glycine, respectively. The regionalized availability of the coagonists matches the preferential affinity of synaptic NMDARs for d-serine and extrasynaptic NMDARs for glycine. Furthermore, glycine and d-serine inhibit NMDAR surface trafficking in a subunit-dependent manner, which is likely to influence NMDARs subcellular location. Taking advantage of this coagonist segregation, we demonstrate that long-term potentiation and NMDA-induced neurotoxicity rely on synaptic NMDARs only. Conversely, long-term depression requires both synaptic and extrasynaptic receptors. Our observations provide key insights into the operating mode of NMDARs, emphasizing functional distinctions between synaptic and extrasynaptic NMDARs in brain physiology.


Asunto(s)
Glicina/metabolismo , Plasticidad Neuronal , Neuronas/metabolismo , Receptores de N-Metil-D-Aspartato/agonistas , Serina/metabolismo , Sinapsis , Animales , Membrana Celular , Células Cultivadas , Hipocampo/citología , Hipocampo/metabolismo , Potenciación a Largo Plazo , Depresión Sináptica a Largo Plazo , Neuroglía/metabolismo , Neuronas/citología , Ratas , Ratas Wistar , Receptores de N-Metil-D-Aspartato/metabolismo
2.
PLoS Comput Biol ; 20(5): e1012186, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38820533

RESUMEN

Astrocytes are a ubiquitous and enigmatic type of non-neuronal cell and are found in the brain of all vertebrates. While traditionally viewed as being supportive of neurons, it is increasingly recognized that astrocytes play a more direct and active role in brain function and neural computation. On account of their sensitivity to a host of physiological covariates and ability to modulate neuronal activity and connectivity on slower time scales, astrocytes may be particularly well poised to modulate the dynamics of neural circuits in functionally salient ways. In the current paper, we seek to capture these features via actionable abstractions within computational models of neuron-astrocyte interaction. Specifically, we engage how nested feedback loops of neuron-astrocyte interaction, acting over separated time-scales, may endow astrocytes with the capability to enable learning in context-dependent settings, where fluctuations in task parameters may occur much more slowly than within-task requirements. We pose a general model of neuron-synapse-astrocyte interaction and use formal analysis to characterize how astrocytic modulation may constitute a form of meta-plasticity, altering the ways in which synapses and neurons adapt as a function of time. We then embed this model in a bandit-based reinforcement learning task environment, and show how the presence of time-scale separated astrocytic modulation enables learning over multiple fluctuating contexts. Indeed, these networks learn far more reliably compared to dynamically homogeneous networks and conventional non-network-based bandit algorithms. Our results fuel the notion that neuron-astrocyte interactions in the brain benefit learning over different time-scales and the conveyance of task-relevant contextual information onto circuit dynamics.


Asunto(s)
Astrocitos , Biología Computacional , Modelos Neurológicos , Red Nerviosa , Neuronas , Astrocitos/fisiología , Neuronas/fisiología , Red Nerviosa/fisiología , Animales , Humanos , Sinapsis/fisiología , Simulación por Computador , Plasticidad Neuronal/fisiología , Encéfalo/fisiología , Aprendizaje/fisiología
3.
Cereb Cortex ; 27(12): 5635-5651, 2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28968740

RESUMEN

Planar cell polarity (PCP) signaling is well known to play a critical role during prenatal brain development; whether it plays specific roles at postnatal stages remains rather unknown. Here, we investigated the role of a key PCP-associated gene scrib in CA1 hippocampal structure and function at postnatal stages. We found that Scrib is required for learning and memory consolidation in the Morris water maze as well as synaptic maturation and NMDAR-dependent bidirectional plasticity. Furthermore, we unveiled a direct molecular interaction between Scrib and PP1/PP2A phosphatases whose levels were decreased in postsynaptic density of conditional knock-out mice. Remarkably, exposure to enriched environment (EE) preserved memory formation in CaMK-Scrib-/- mice by recovering synaptic plasticity and maturation. Thus, Scrib is required for synaptic function involved in memory formation and EE has beneficiary therapeutic effects. Our results demonstrate a distinct new role for a PCP-associated protein, beyond embryonic development, in cognitive functions during adulthood.


Asunto(s)
Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/terapia , Ambiente , Péptidos y Proteínas de Señalización Intracelular/deficiencia , Plasticidad Neuronal/fisiología , Animales , Células COS , Chlorocebus aethiops , Disfunción Cognitiva/patología , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Hipocampo/ultraestructura , Vivienda para Animales , Péptidos y Proteínas de Señalización Intracelular/genética , Discapacidades para el Aprendizaje/patología , Discapacidades para el Aprendizaje/fisiopatología , Discapacidades para el Aprendizaje/terapia , Masculino , Trastornos de la Memoria/patología , Trastornos de la Memoria/fisiopatología , Trastornos de la Memoria/terapia , Ratones Noqueados , Modelos Moleculares , Densidad Postsináptica/metabolismo , Densidad Postsináptica/ultraestructura , Receptores de N-Metil-D-Aspartato/metabolismo , Sinapsis/metabolismo , Sinapsis/ultraestructura
4.
Proc Natl Acad Sci U S A ; 112(43): E5854-62, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26460021

RESUMEN

Learning theories distinguish elemental from configural learning based on their different complexity. Although the former relies on simple and unambiguous links between the learned events, the latter deals with ambiguous discriminations in which conjunctive representations of events are learned as being different from their elements. In mammals, configural learning is mediated by brain areas that are either dispensable or partially involved in elemental learning. We studied whether the insect brain follows the same principles and addressed this question in the honey bee, the only insect in which configural learning has been demonstrated. We used a combination of conditioning protocols, disruption of neural activity, and optophysiological recording of olfactory circuits in the bee brain to determine whether mushroom bodies (MBs), brain structures that are essential for memory storage and retrieval, are equally necessary for configural and elemental olfactory learning. We show that bees with anesthetized MBs distinguish odors and learn elemental olfactory discriminations but not configural ones, such as positive and negative patterning. Inhibition of GABAergic signaling in the MB calyces, but not in the lobes, impairs patterning discrimination, thus suggesting a requirement of GABAergic feedback neurons from the lobes to the calyces for nonelemental learning. These results uncover a previously unidentified role for MBs besides memory storage and retrieval: namely, their implication in the acquisition of ambiguous discrimination problems. Thus, in insects as in mammals, specific brain regions are recruited when the ambiguity of learning tasks increases, a fact that reveals similarities in the neural processes underlying the elucidation of ambiguous tasks across species.


Asunto(s)
Insectos/fisiología , Aprendizaje , Cuerpos Pedunculados/fisiología , Animales , Cuerpos Pedunculados/efectos de los fármacos , Odorantes , Procaína/farmacología , Ácido gamma-Aminobutírico/metabolismo
5.
Nature ; 463(7278): 232-6, 2010 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-20075918

RESUMEN

Long-term potentiation (LTP) of synaptic transmission provides an experimental model for studying mechanisms of memory. The classical form of LTP relies on N-methyl-D-aspartate receptors (NMDARs), and it has been shown that astroglia can regulate their activation through Ca(2+)-dependent release of the NMDAR co-agonist D-serine. Release of D-serine from glia enables LTP in cultures and explains a correlation between glial coverage of synapses and LTP in the supraoptic nucleus. However, increases in Ca(2+) concentration in astroglia can also release other signalling molecules, most prominently glutamate, ATP and tumour necrosis factor-alpha, whereas neurons themselves can synthesize and supply D-serine. Furthermore, loading an astrocyte with exogenous Ca(2+) buffers does not suppress LTP in hippocampal area CA1 (refs 14-16), and the physiological relevance of experiments in cultures or strong exogenous stimuli applied to astrocytes has been questioned. The involvement of glia in LTP induction therefore remains controversial. Here we show that clamping internal Ca(2+) in individual CA1 astrocytes blocks LTP induction at nearby excitatory synapses by decreasing the occupancy of the NMDAR co-agonist sites. This LTP blockade can be reversed by exogenous D-serine or glycine, whereas depletion of D-serine or disruption of exocytosis in an individual astrocyte blocks local LTP. We therefore demonstrate that Ca(2+)-dependent release of D-serine from an astrocyte controls NMDAR-dependent plasticity in many thousands of excitatory synapses nearby.


Asunto(s)
Astrocitos/metabolismo , Potenciación a Largo Plazo/fisiología , Serina/metabolismo , Animales , Astrocitos/citología , Astrocitos/efectos de los fármacos , Calcio/antagonistas & inhibidores , Calcio/metabolismo , Exocitosis/efectos de los fármacos , Glicina/farmacología , Hipocampo/citología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Potenciación a Largo Plazo/efectos de los fármacos , Masculino , Memoria/efectos de los fármacos , Memoria/fisiología , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Receptores de N-Metil-D-Aspartato/agonistas , Receptores de N-Metil-D-Aspartato/metabolismo , Serina/biosíntesis , Serina/farmacología , Sinapsis/efectos de los fármacos , Sinapsis/metabolismo
6.
STAR Protoc ; 5(3): 103305, 2024 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-39276355

RESUMEN

Calcium imaging has become a popular way to probe astrocyte activity, but few techniques holistically capture discrete calcium signals occurring across the astrocyte domain. Here, we introduce STARDUST, a pipeline for the spatio-temporal analysis of regional dynamics and unbiased sorting of transients from fluorescence recordings of astrocytes. We describe steps for installing software, detecting active pixel patches, obtaining region of activity (ROA) maps, and extracting time series from ROAs. We then detail procedures for extracting signal features using custom-made code.

7.
bioRxiv ; 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38645020

RESUMEN

Calcium imaging has become a popular way to probe astrocyte activity, but few analysis methods holistically capture discrete calcium signals that occur across the astrocyte domain. Here, we introduce STARDUST, a pipeline for the Spatio-Temporal Analysis of Regional Dynamics & Unbiased Sorting of Transients from fluorescence recordings of astrocytes, and provide step-by-step guidelines. STARDUST yields fluorescence time-series from data-defined regions of activity and performs systematic signal detection and feature extraction, enabling the in-depth and unbiased study of astrocyte calcium signals.

8.
bioRxiv ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38826209

RESUMEN

Locus coeruleus (LC)-derived norepinephrine (NE) drives network and behavioral adaptations to environmental saliencies by reconfiguring circuit connectivity, but the underlying synapse-level mechanisms are elusive. Here, we show that NE remodeling of synaptic function is independent from its binding on neuronal receptors. Instead, astrocytic adrenergic receptors and Ca2+ dynamics fully gate the effect of NE on synapses as the astrocyte-specific deletion of adrenergic receptors and three independent astrocyte-silencing approaches all render synapses insensitive to NE. Additionally, we find that NE suppression of synaptic strength results from an ATP-derived and adenosine A1 receptor-mediated control of presynaptic efficacy. An accompanying study from Chen et al. reveals the existence of an analogous pathway in the larval zebrafish and highlights its importance to behavioral state transitions. Together, these findings fuel a new model wherein astrocytes are a core component of neuromodulatory systems and the circuit effector through which norepinephrine produces network and behavioral adaptations, challenging an 80-year-old status quo.

9.
Nat Neurosci ; 26(11): 1848-1856, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37857773

RESUMEN

The participation of astrocytes in brain computation was hypothesized in 1992, coinciding with the discovery that these cells display a form of intracellular Ca2+ signaling sensitive to neuroactive molecules. This finding fostered conceptual leaps crystalized around the idea that astrocytes, once thought to be passive, participate actively in brain signaling and outputs. A multitude of disparate roles of astrocytes has since emerged, but their meaningful integration has been muddied by the lack of consensus and models of how we conceive the functional position of these cells in brain circuitry. In this Perspective, we propose an intuitive, data-driven and transferable conceptual framework we coin 'contextual guidance'. It describes astrocytes as 'contextual gates' that shape neural circuitry in an adaptive, state-dependent fashion. This paradigm provides fresh perspectives on principles of astrocyte signaling and its relevance to brain function, which could spur new experimental avenues, including in computational space.


Asunto(s)
Astrocitos , Transducción de Señal , Neuronas , Sinapsis/metabolismo , Encéfalo , Señalización del Calcio
10.
Cell Rep ; 42(12): 113538, 2023 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-38096051

RESUMEN

A unique signature of neurons is the high expression of the longest genes in the genome. These genes have essential neuronal functions, and disruption of their expression has been implicated in neurological disorders. DNA topoisomerases resolve DNA topological constraints and facilitate neuronal long gene expression. Conversely, the Rett syndrome protein, methyl-CpG-binding protein 2 (MeCP2), can transcriptionally repress long genes. How these factors regulate long genes is not well understood, and whether they interact is not known. Here, we identify and map a functional interaction between MeCP2 and topoisomerase IIß (TOP2ß) in mouse neurons. We profile neuronal TOP2ß activity genome wide, detecting enrichment at regulatory regions and gene bodies of long genes, including MeCP2-regulated genes. We show that loss and overexpression of MeCP2 alter TOP2ß activity at MeCP2-regulated genes. These findings uncover a mechanism of TOP2ß inhibition by MeCP2 in neurons and implicate TOP2ß dysregulation in disorders caused by MeCP2 disruption.


Asunto(s)
Proteína 2 de Unión a Metil-CpG , Síndrome de Rett , Animales , Ratones , Proteína 2 de Unión a Metil-CpG/genética , Proteína 2 de Unión a Metil-CpG/metabolismo , Neuronas/metabolismo , Síndrome de Rett/genética
11.
bioRxiv ; 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36909558

RESUMEN

Phenotypic heterogeneity is a common feature of monogenic neurodevelopmental disorders that can arise from differential severity of missense variants underlying disease, but how distinct alleles impact molecular mechanisms to drive variable disease presentation is not well understood. Here, we investigate missense mutations in the DNA methyltransferase DNMT3A associated with variable overgrowth, intellectual disability, and autism, to uncover molecular correlates of phenotypic heterogeneity in neurodevelopmental disease. We generate a DNMT3A P900L/+ mouse model mimicking a disease mutation with mild-to-moderate severity and compare phenotypic and epigenomic effects with a severe R878H mutation. We show that the P900L mutation leads to disease-relevant overgrowth, obesity, and social deficits shared across DNMT3A disorder models, while the R878H mutation causes more extensive epigenomic disruption leading to differential dysregulation of enhancers elements. We identify distinct gene sets disrupted in each mutant which may contribute to mild or severe disease, and detect shared transcriptomic disruption that likely drives common phenotypes across affected individuals. Finally, we demonstrate that core gene dysregulation detected in DNMT3A mutant mice overlaps effects in other developmental disorder models, highlighting the importance of DNMT3A-deposited methylation in neurodevelopment. Together, these findings define central drivers of DNMT3A disorders and illustrate how variable disruption of transcriptional mechanisms can drive the spectrum of phenotypes in neurodevelopmental disease.

12.
Cell Rep ; 42(11): 113411, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37952155

RESUMEN

Phenotypic heterogeneity in monogenic neurodevelopmental disorders can arise from differential severity of variants underlying disease, but how distinct alleles drive variable disease presentation is not well understood. Here, we investigate missense mutations in DNA methyltransferase 3A (DNMT3A), a DNA methyltransferase associated with overgrowth, intellectual disability, and autism, to uncover molecular correlates of phenotypic heterogeneity. We generate a Dnmt3aP900L/+ mouse mimicking a mutation with mild to moderate severity and compare phenotypic and epigenomic effects with a severe R878H mutation. P900L mutants exhibit core growth and behavioral phenotypes shared across models but show subtle epigenomic changes, while R878H mutants display extensive disruptions. We identify mutation-specific dysregulated genes that may contribute to variable disease severity. Shared transcriptomic disruption identified across mutations overlaps dysregulation observed in other developmental disorder models and likely drives common phenotypes. Together, our findings define central drivers of DNMT3A disorders and illustrate how variable epigenomic disruption contributes to phenotypic heterogeneity in neurodevelopmental disease.


Asunto(s)
ADN (Citosina-5-)-Metiltransferasas , ADN Metiltransferasa 3A , Animales , Ratones , ADN (Citosina-5-)-Metiltransferasas/genética , ADN (Citosina-5-)-Metiltransferasas/metabolismo , Epigénesis Genética , Epigenómica , Mutación/genética
13.
J Neurosci ; 30(29): 9738-52, 2010 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-20660256

RESUMEN

Scribble (Scrib) is a key regulator of apicobasal polarity, presynaptic architecture, and short-term synaptic plasticity in Drosophila. In mammals, its homolog Scrib1 has been implicated in cancer, neural tube closure, and planar cell polarity (PCP), but its specific role in the developing and adult nervous system is unclear. Here, we used the circletail mutant, a mouse model for PCP defects, to show that Scrib1 is located in spines where it influences actin cytoskeleton and spine morphing. In the hippocampus of these mutants, we observed an increased synapse pruning associated with an increased number of enlarged spines and postsynaptic density, and a decreased number of perforated synapses. This phenotype was associated with a mislocalization of the signaling pathway downstream of Scrib1, leading to an overall activation of Rac1 and defects in actin dynamic reorganization. Finally, Scrib1-deficient mice exhibit enhanced learning and memory abilities and impaired social behavior, two features relevant to autistic spectrum disorders. Our data identify Scrib1 as a crucial regulator of brain development and spine morphology, and suggest that Scrib1(crc/+) mice might be a model for studying synaptic dysfunction and human psychiatric disorders.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Hipocampo/citología , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Aprendizaje/fisiología , Memoria/fisiología , Plasticidad Neuronal/genética , Conducta Social , Animales , Encéfalo/embriología , Células COS , Células Cultivadas , Chlorocebus aethiops , Espinas Dendríticas/metabolismo , Espinas Dendríticas/ultraestructura , Femenino , Hipocampo/embriología , Masculino , Ratones , Modelos Animales , Actividad Motora/fisiología , Mutación , Técnicas de Placa-Clamp , Sinapsis/fisiología , Transmisión Sináptica/genética
14.
Neuron ; 109(4): 576-596, 2021 02 17.
Artículo en Inglés | MEDLINE | ID: mdl-33385325

RESUMEN

Astrocytes are a large and diverse population of morphologically complex cells that exist throughout nervous systems of multiple species. Progress over the last two decades has shown that astrocytes mediate developmental, physiological, and pathological processes. However, a long-standing open question is how astrocytes regulate neural circuits in ways that are behaviorally consequential. In this regard, we summarize recent studies using Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, and Mus musculus. The data reveal diverse astrocyte mechanisms operating in seconds or much longer timescales within neural circuits and shaping multiple behavioral outputs. We also refer to human diseases that have a known primary astrocytic basis. We suggest that including astrocytes in mechanistic, theoretical, and computational studies of neural circuits provides new perspectives to understand behavior, its regulation, and its disease-related manifestations.


Asunto(s)
Astrocitos/metabolismo , Trastornos Mentales/metabolismo , Red Nerviosa/metabolismo , Neuronas/metabolismo , Animales , Astrocitos/patología , Caenorhabditis elegans , Drosophila , Humanos , Trastornos Mentales/genética , Trastornos Mentales/patología , Ratones , Red Nerviosa/patología , Neuronas/patología , Especificidad de la Especie , Pez Cebra
15.
Cereb Cortex ; 19(7): 1515-20, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-18787232

RESUMEN

The absence of fragile X mental retardation protein results in the fragile X syndrome (FXS), a common form of mental retardation associated with attention deficit, autistic behavior, and epileptic seizures. The phenotype of FXS is reproduced in fragile X mental retardation 1 (fmr1) knockout (KO) mice that have region-specific altered expression of some gamma-aminobutyric acid (GABA(A)) receptor subunits. However, little is known about the characteristics of GABAergic inhibition in the subiculum of these animals. We employed patch-clamp recordings from subicular pyramidal cells in an in vitro slice preparation. In addition, semiquantitative polymerase chain reaction and western blot experiments were performed on subiculum obtained from wild-type (WT) and KO mice. We found that tonic GABA(A) currents were downregulated in fmr1 KO compared with WT neurons, whereas no significant differences were observed in phasic GABA(A) currents. Molecular biology analysis revealed that the tonic GABA(A) receptor subunits alpha5 and delta were underexpressed in the fmr1 KO mouse subiculum compared with WT. Because the subiculum plays a role in both cognitive functions and epileptic disorders, we propose that altered tonic inhibition in this structure contributes to the behavioral deficits and epileptic activity seen in FXS patients. This conclusion is in line with evidence implicating tonic GABA(A) inhibition in learning and memory.


Asunto(s)
Modelos Animales de Enfermedad , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/metabolismo , Inhibición Neural , Receptores de GABA-A/metabolismo , Transmisión Sináptica , Ácido gamma-Aminobutírico/metabolismo , Animales , Regulación hacia Abajo , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados
16.
Curr Protoc Neurosci ; 93(1): e102, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32898306

RESUMEN

Elucidating the complex neural mechanisms that underlie cognition is contingent upon our ability to measure behavioral outputs reliably in animal models. While the development of open-source software has made behavioral science more accessible, behavioral research remains underappreciated and underutilized. One reason is the large real estate necessitated by traditional behavioral setups. Space must be specifically allocated for a controlled testing environment, accommodate the large footprint of mazes used in behavioral research, and allow a contiguous computerized area for data acquisition. Additionally, to achieve the distinct and sometimes incompatible environmental conditions required by different tasks, a suite of testing rooms may be necessary. Because space is a limited resource, this makes behavioral testing impractical for some labs or leads to implementation of suboptimal solutions that compromise the ergonomics of the working space, prevent the adequate control of environmental parameters around the testing setup, and jeopardize experimental reproducibility. Here, we describe a modular, space-saving, self-sufficient, functional, customizable, and cost-efficient setup to allow a large line of behavioral tests in mice within a single, compact room (<8 m2 ). Because it is modular by design, this setup requires no compromises on ergonomics, environmental control, or complexity of the visual landscape. It is inherently effective at streamlining behavioral experiments by eliminating the need to redefine tracking parameters, and makes swapping between configurations fast (∼1 min) and effortless. Presently, this design allows one to run eight major behavioral tasks, permitting a detailed and comprehensive analysis of mouse behavior within the footprint of a small office. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Constructing the support table Support Protocol 1: Constructing the open-field maze Support Protocol 2: Constructing IR-permissive inserts for light-dark assays Support Protocol 3: Constructing the three-chamber maze Support Protocol 4: Constructing the Y maze Support Protocol 5: Constructing the elevated plus maze Support Protocol 6: Constructing the Barnes maze Basic Protocol 2: Setting up the behavior room: flange and pulley systems Basic Protocol 3: Setting up the behavior room: environmental and storage systems Basic Protocol 4: Assembling and switching between configurations.


Asunto(s)
Conducta Animal/fisiología , Investigación Conductal/instrumentación , Aprendizaje por Laberinto/fisiología , Neurociencias/instrumentación , Animales , Investigación Conductal/métodos , Ratones , Neurociencias/métodos
17.
Nat Commun ; 11(1): 4358, 2020 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-32868768

RESUMEN

Learned fear and safety are associated with distinct oscillatory states in the basolateral amygdala (BLA) and medial prefrontal cortex (mPFC). To determine if and how these network states support the retrieval of competing memories, we mimicked endogenous oscillatory activity through optogenetic stimulation of parvalbumin-expressing interneurons in mice during retrieval of contextual fear and extinction memories. We found that exogenously induced 4 Hz and 8 Hz oscillatory activity in the BLA exerts bi-directional control over conditioned freezing behavior in an experience- and context-specific manner, and that these oscillations have an experience-dependent ability to recruit distinct functional neuronal ensembles. At the network level we demonstrate, via simultaneous manipulation of BLA and mPFC, that experience-dependent 4 Hz resonance across BLA-mPFC circuitry supports post-extinction fear memory retrieval. Our findings reveal that post-extinction fear memory retrieval is supported by local and interregional experience-dependent resonance, and suggest novel approaches for interrogation and therapeutic manipulation of acquired fear circuitry.


Asunto(s)
Amígdala del Cerebelo/fisiología , Extinción Psicológica , Miedo/fisiología , Memoria/fisiología , Animales , Complejo Nuclear Basolateral/fisiología , Condicionamiento Psicológico , Electrofisiología/métodos , Aprendizaje/fisiología , Ratones , Optogenética/métodos , Corteza Prefrontal/fisiología
18.
Cell Rep ; 33(8): 108416, 2020 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-33238114

RESUMEN

Mutations in DNA methyltransferase 3A (DNMT3A) have been detected in autism and related disorders, but how these mutations disrupt nervous system function is unknown. Here, we define the effects of DNMT3A mutations associated with neurodevelopmental disease. We show that diverse mutations affect different aspects of protein activity but lead to shared deficiencies in neuronal DNA methylation. Heterozygous DNMT3A knockout mice mimicking DNMT3A disruption in disease display growth and behavioral alterations consistent with human phenotypes. Strikingly, in these mice, we detect global disruption of neuron-enriched non-CG DNA methylation, a binding site for the Rett syndrome protein MeCP2. Loss of this methylation leads to enhancer and gene dysregulation that overlaps with models of Rett syndrome and autism. These findings define the effects of DNMT3A haploinsufficiency in the brain and uncover disruption of the non-CG methylation pathway as a convergence point across neurodevelopmental disorders.


Asunto(s)
ADN Metiltransferasa 3A/metabolismo , Epigenómica/métodos , Trastornos del Neurodesarrollo/genética , Animales , Haploinsuficiencia , Humanos , Ratones
19.
Nat Commun ; 11(1): 6164, 2020 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-33268780

RESUMEN

Familial hemiplegic migraine is an episodic neurological disorder characterized by transient sensory and motor symptoms and signs. Mutations of the ion pump α2-Na/K ATPase cause familial hemiplegic migraine, but the mechanisms by which α2-Na/K ATPase mutations lead to the migraine phenotype remain incompletely understood. Here, we show that mice in which α2-Na/K ATPase is conditionally deleted in astrocytes display episodic paralysis. Functional neuroimaging reveals that conditional α2-Na/K ATPase knockout triggers spontaneous cortical spreading depression events that are associated with EEG low voltage activity events, which correlate with transient motor impairment in these mice. Transcriptomic and metabolomic analyses show that α2-Na/K ATPase loss alters metabolic gene expression with consequent serine and glycine elevation in the brain. A serine- and glycine-free diet rescues the transient motor impairment in conditional α2-Na/K ATPase knockout mice. Together, our findings define a metabolic mechanism regulated by astrocytic α2-Na/K ATPase that triggers episodic motor paralysis in mice.


Asunto(s)
Astrocitos/metabolismo , Ataxia/genética , Metaboloma/genética , Migraña con Aura/genética , ATPasa Intercambiadora de Sodio-Potasio/genética , Transcriptoma , Animales , Astrocitos/patología , Ataxia/metabolismo , Ataxia/patología , Encéfalo/metabolismo , Encéfalo/patología , Modelos Animales de Enfermedad , Electroencefalografía , Femenino , Neuroimagen Funcional , Glicina/metabolismo , Masculino , Ratones , Ratones Noqueados , Migraña con Aura/metabolismo , Migraña con Aura/patología , Prueba de Desempeño de Rotación con Aceleración Constante , Serina/metabolismo , ATPasa Intercambiadora de Sodio-Potasio/deficiencia
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda