Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Biochem Biophys Res Commun ; 715: 149975, 2024 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-38676997

RESUMEN

Many GTPases have been shown to utilize ATP too as the phosphoryl donor. Both GTP and ATP are important molecules in the cellular environments and play multiple and discrete functional role within the cells. In our present study, we showed that one of the purine metabolic enzymes Adenylosuccinate synthetase from Leishmania donovani (LdAdSS) which belongs to the BioD-superfamily of GTPases can also carry out the catalysis by hydrolysing ATP instead of its cognate substrate GTP albeit with less efficiency. Biochemical and biophysical studies indicated its ability to bind to ATP too but at a higher concentration of ATP compared to that of GTP. Sequence analysis and molecular dynamic simulations suggested that residues of the switch loop and the G4-G5 (593SAXD596) connected motif of LdAdSS plays a role in determining the nucleotide specificity. Though the crucial interaction between Asp596 and the nucleotide is broken when ATP is bound, interactions between the Ala594 and the adenine ring of ATP could still hold ATP in the GTP binding site. The results of the present study suggested that though LdAdSS is GTP specific, it still shows ATP hydrolysing activity.


Asunto(s)
Adenosina Trifosfato , Adenilosuccinato Sintasa , Guanosina Trifosfato , Leishmania donovani , Leishmania donovani/enzimología , Leishmania donovani/metabolismo , Leishmania donovani/genética , Adenosina Trifosfato/metabolismo , Guanosina Trifosfato/metabolismo , Adenilosuccinato Sintasa/metabolismo , Adenilosuccinato Sintasa/química , Especificidad por Sustrato , Simulación de Dinámica Molecular , Secuencia de Aminoácidos , Sitios de Unión , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/química , Proteínas Protozoarias/genética , GTP Fosfohidrolasas/metabolismo , GTP Fosfohidrolasas/química
2.
Arch Biochem Biophys ; 757: 110040, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38750922

RESUMEN

Purine salvage enzymes have been of significant interest in anti-Leishmanial drug development due to the parasite's critical dependence on this pathway for the supply of nucleotides in the absence of a de novo purine synthesis pathway. Adenylosuccinate lyase (ADSL) one of the key enzymes in this pathway is a homo-tetramer, where the active site is formed by residues from three distinct subunits. Analysis of the subunit interfaces of LdADSL, revealed a conserved Arg40 forming critical inter-subunit interactions and also involved in substrate binding. We hypothesized that mutating this residue can affect both the structural stability and activity of the enzyme. In our study, we used biochemical, biophysical, and computational simulation approaches to understand the structural and functional role of Arg40 in LdADSL. We have replaced Arg40 with an Ala and Glu using site directed mutagenesis. The mutant enzymes were similar to wild-type enzyme in secondary structure and subunit association. Thermal shift assays indicated that the mutations affected the protein stability. Both mutants showed decreased specific activities in both forward and reverse directions with significantly weakened affinities towards succinyl-adenosine monophosphate (SAMP). The mutations resulted in changes in C3 loop conformation and D3 domain rotation. Consequently, the orientation of the active site amino acid residues changed resulting in compromised activity and stability. Studies so far have majorly focused on the ADSL active site for designing drugs against it. Our work indicates that an alternative inhibitory mechanism for the enzyme can be designed by targeting the inter-subunit interface.


Asunto(s)
Adenilosuccinato Liasa , Arginina , Estabilidad de Enzimas , Leishmania donovani , Adenilosuccinato Liasa/genética , Adenilosuccinato Liasa/química , Adenilosuccinato Liasa/metabolismo , Leishmania donovani/enzimología , Leishmania donovani/genética , Arginina/metabolismo , Arginina/química , Purinas/metabolismo , Purinas/química , Proteínas Protozoarias/genética , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo , Mutagénesis Sitio-Dirigida , Dominio Catalítico , Simulación de Dinámica Molecular
3.
Prog Mol Biol Transl Sci ; 207: 23-58, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38942539

RESUMEN

Protozoan parasites are major hazards to human health, society, and the economy, especially in equatorial regions of the globe. Parasitic diseases, including leishmaniasis, malaria, and others, contribute towards majority of morbidity and mortality. Around 1.1 million people die from these diseases annually. The lack of licensed vaccinations worsens the worldwide impact of these diseases, highlighting the importance of safe and effective medications for their prevention and treatment. However, the appearance of drug resistance in parasites continuously affects the availability of medications. The demand for novel drugs motivates global antiparasitic drug discovery research, necessitating the implementation of many innovative ways to maintain a continuous supply of promising molecules. Drug repurposing has come out as a compelling tool for drug development, offering a cost-effective and efficient alternative to standard de novo approaches. A thorough examination of drug repositioning candidates revealed that certain drugs may not benefit significantly from their original indications. Still, they may exhibit more pronounced effects in other disorders. Furthermore, certain medications can produce a synergistic effect, resulting in enhanced therapeutic effectiveness when given together. In this chapter, we outline the approaches employed in drug repurposing (sometimes referred to as drug repositioning), propose novel strategies to overcome these hurdles and fully exploit the promise of drug repurposing. We highlight a few major human protozoan diseases and a range of exemplary drugs repurposed for various protozoan infections, providing excellent outcomes for each disease.


Asunto(s)
Reposicionamiento de Medicamentos , Infecciones por Protozoos , Humanos , Animales , Infecciones por Protozoos/tratamiento farmacológico , Antiprotozoarios/uso terapéutico , Antiprotozoarios/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda