RESUMEN
Copper cadmium tin selenide (Cu2CdSnSe4) based photodetector (PD) has been explored with the solar cell capacitance simulator (SCAPS-1D). Herein, cadmium sulfide (CdS) and molybdenum disulfide (MoS2) are used as a window and back surface field (BSF) layers, respectively. The physical attributes, such as width, carrier density and bulk defects have been adjusted to attain the optimal conditions. In an optimized environment, the performance parameters of the Cu2CdSnSe4 (CCTSe) PD e.g. open circuit voltage (VOC), short circuit current (JSC), responsivity, and detectivity are determined as 0.76 V, 45.57 mA/cm2, 0.72 A/W and 5.05 × 1014 Jones, respectively without a BSF layer. After insertion of the BSF layer, the performance of the CCTSe PD is significantly upgraded because of the production of high built-in potential which rises the magnitude of VOC from 0.76 V to 0.84 V. For this reason, the responsivity and detectivity of CCTSe PD are also grows with the value of 0.84 A/W and 2.32 × 1015 Jones, respectively that indicate its future potential.
RESUMEN
This work provides a comprehensive investigation by using simulations and performance analysis of a high performance and narrowband Ag3CuS2 photodetector (PD) that operates in the near-infrared (NIR) region and is built using WS2 and BaSi2 semiconductors. Across its operational wavelength range, a comprehensive assessment of the device's electrical and optical properties such as photocurrent, open-circuit voltage, quantum efficiency, responsivity and detectivity is methodically carried out. Furthermore, a thorough investigation has been conducted into the impact of many parameters, including width, carrier density and defects of various layers. Also, the intricate interactions between WS2/Ag3CuS2 and Ag3CuS2/BaSi2 interface properties of the photodetector are explored. The Ag3CuS2-based PD remarkably produces the best outcomes with an open-circuit voltage of 0.74 V, current of 43.79 mA/cm2, responsivity of 0.79 AW-1 and detectivity of 4.73 × 1014 Jones and over 90 % QE in the NIR range for the Ag3CuS2 PD. The results showcase this jalpaite material as a promising one in the field of PD.