Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Small ; 20(21): e2308320, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38105422

RESUMEN

The urgent need for the development of micro-thin shields against electromagnetic interference (EMI) has sparked interest in MXene materials owing to their metallic electrical conductivity and ease of film processing. Meanwhile, postprocessing treatments can potentially exert profound impacts on their shielding effectiveness (SE). This work comprehensively compares two reduction methods, hydrazine versus thermal, to fabricate foamed titanium carbonitride (Ti3CNTx) MXene films for efficient EMI shielding. Upon treatment of ≈ 100 µm-thick MXene films, gaseous transformations of oxygen-containing surface groups induce highly porous structures (up to ≈ 74.0% porosity). The controlled application of hydrazine and heat allows precise regulation of the reduction processes, enabling tailored control over the morphology, thickness, chemistry, and electrical properties of the MXene films. Accordingly, the EMI SE values are theoretically and experimentally determined. The treated MXene films exhibit significantly enhanced SE values compared to the pristine MXene film (≈ 52.2 dB), with ≈ 38% and ≈ 83% maximum improvements for the hydrazine and heat-treated samples, respectively. Particularly, heat treatment is more effective in terms of this enhancement such that an SE of 118.4 dB is achieved at 14.3 GHz, unprecedented for synthetic materials. Overall, the findings of this work hold significant practical implications for advancing high-performance, non-metallic EMI shielding materials.

2.
Small ; : e2404876, 2024 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-39072882

RESUMEN

Electromagnetic pollution presents growing challenges due to the rapid expansion of portable electronic and communication systems, necessitating lightweight materials with superior shielding capabilities. While prior studies focused on enhancing electromagnetic interference (EMI) shielding effectiveness (SE), less attention is given to absorption-dominant shielding mechanisms, which mitigate secondary pollution. By leveraging material science and engineering design, a layered structure is developed comprising rGOnR/MXene-PDMS nanocomposite and a MXene film, demonstrating exceptional EMI shielding and ultra-high electromagnetic wave absorption. The 3D interconnected network of the nanocomposite, with lower conductivity (10-3-10-2 S/cm), facilitates a tuned impedance matching layer with effective dielectric permittivity, and high attenuation capability through conduction loss, polarization loss at heterogeneous interfaces, and multiple scattering and reflections. Additionally, the higher conductivity MXene layer exhibits superior SE, reflecting passed electromagnetic waves back to the nanocomposite for further attenuation due to a π/2 phase shift between incident and back-surface reflected electromagnetic waves. The synergistic effect of the layered structures markedly enhances total SE to 54.1 dB over the Ku-band at a 2.5 mm thickness. Furthermore, the study investigates the impact of hybridized layered structure on reducing the minimum required thickness to achieve a peak absorption (A) power of 0.88 at a 2.5 mm thickness.

3.
Small ; : e2404189, 2024 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-39109567

RESUMEN

An ideal dielectric material for microelectronic devices requires a combination of high anisotropic thermal conductivity and low dielectric constant (ɛ') and loss (tan δ). Polymer composites of boron nitride nanotubes (BNNTs), which offer excellent thermal and dielectric properties, show promise for developing these dielectric polymer composites. Herein, a simple method for fabricating polymer/BNNT composites with high directional thermal conductivity and excellent dielectric properties is presented. The nanocomposites with directionally aligned BNNTs are fabricated through melt-compounding and in situ fibrillation, followed by sintering the fibrous nanocomposites. The fabricated nanocomposites show a significant enhancement in thermal properties, with an in-plane thermal conductivity (K‖) of 1.8 Wm-1K-1-a 450% increase-yielding a high anisotropy ratio (K‖/K⊥) of 36, a 1700% improvement over isotropic samples containing only 7.2 vol% BNNT. These samples exhibit a 120% faster in-plane heat dissipation compared to the through-plane within 2 s. Additionally, they display low ɛ' of ≈3.2 and extremely low tan δ of ≈0.014 at 1 kHz. These results indicate that this method provides a new avenue for designing and creating polymer composites with enhanced directional heat dissipation properties along with high K‖, suitable for thermal management applications in electronic packaging, thermal interface materials, and passive cooling systems.

4.
Nano Lett ; 22(8): 3356-3363, 2022 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-35385668

RESUMEN

2D materials are well-known for their low-friction behavior by modifying the interfacial forces at atomic surfaces. Of the wide range of 2D materials, MXenes represent an emerging material class but their lubricating behavior has been scarcely investigated. Herein, the friction mechanisms of 2D Ti3C2Tx MXenes are demonstrated which are attributed to their surface terminations. We find that Ti3C2Tx MXenes do not exhibit the well-known frictional layer dependence of other 2D materials. Instead, the nanoscale lubricity of 2D MXenes is governed by the termination species resulting from synthesis. Annealing the MXenes demonstrate a 7% reduction in OH termination which translates to a 16-57% reduction of friction in agreement with DFT calculations. Finally, the stability of MXene flakes is demonstrated upon isolation from their aqueous environment. This work indicates that MXenes can provide sustainable lubricity at any thickness which makes them uniquely positioned among 2D material lubricants.

5.
Langmuir ; 38(10): 3189-3201, 2022 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-35245061

RESUMEN

This work reports on the formation of closely packed conductive droplets demonstrating polygon-like patterns at the interface in partially wetted ternary polymer systems prepared by melt blending and annealing treatment. The low-density polyethylene/poly(ether-block-amide)/poly(butylene-adipate-co-terephthalate) (LDPE/PEBA/PBAT) blend showed an intermediate partial wetting tendency where the interfacially localized conductive PEBA phase developed connected structure after blending but transformed into dispersed droplets upon annealing. The coalescence of the PEBA droplets appeared to be initiated by the Rayleigh-type instability in the thin PBAT film separating PEBA. However, the intrinsic coalescence rate of the PEBA droplets was very low due to the low interfacial tension of PEBA/PBAT. This slow coalescence of PEBA combined with the fast reduction in the interfacial area during annealing and the intermediate partial wetting state of the LDPE/PEBA/PBAT system resulted in a unique morphology of closely packed PEBA droplets with polygon-like patterns at a volume fraction of 50/10/40. Two other representative ternary polymer blends, LDPE/PEBA/polypropylene (PP) and compatibilized LDPE/PEBA/polystyrene (PS), with strong and weak partial wetting morphologies were also examined to highlight the mechanism for the morphology development in the LDPE/PEBA/PBAT blend.

6.
Phys Chem Chem Phys ; 23(37): 20795-20834, 2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34546266

RESUMEN

In recent years, the problem of electromagnetic wave (EMW) pollution has attracted more and more attention with the development of science and technology. In order to solve this complex problem, the research and development of EMW-absorbing materials is crucial. The new absorbing materials should have the characteristics of light weight, high efficiency, wide bandwidth, environmental protection, oxidation resistance, and other characteristics. Traditional single-phase Ni materials exhibit remarkable ferromagnetic behavior and double-loss mechanisms (dielectric loss and magnetic loss), and are considered as efficient EMW absorbers. However, under the action of EMWs, especially in the GHz frequency band, Ni materials tend to produce an eddy current effect, which limits their application prospects. For Ni-based materials, there is much interest in modifying the composite materials by designing a hierarchical structure for their preparation. Traditional, single-phase, carbon-based materials have been widely used in related fields because of their light weight and good conductivity. However, a single-loss mechanism will affect the impedance matching of carbon materials, thus affecting their application in the field of absorbing waves. For carbon materials, people use them as a filler or matrix material to fabricate composites with metals, metal oxides, or polymer materials to obtain carbon-containing absorbing materials. This paper reviews the evaluation and design principles of the absorbing properties of EMW-absorbing materials. Then, the progress of modified single-phase Ni-based materials (designed materials with 0D, 1D, 2D, and 3D structures), the development of carbon materials (carbon black, carbon nanotubes, carbon fiber, graphite oxide, reduced graphene oxide, and biomedical carbon), and the research progress of Ni-C composite materials (the composite material formed by nickel and carbon) are reviewed. The ultimate goal is to obtain absorbers with light weight, strong absorbing ability, and a wide frequency band. In particular, Ni-MXene, Ni-biomedical carbon, and Ni-multiphase carbon composites are the target direction for designing new and high efficiency EMW absorbers. Finally, the basic challenges and opportunities in this field are discussed.

7.
Soft Matter ; 14(22): 4603-4614, 2018 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-29786729

RESUMEN

A variant of the Sanchez-Lacombe equation of state is applied to several polymers, blowing agents, and saturated mixtures of interest to the polymer foaming industry. These are low-density polyethylene-carbon dioxide and polylactide-carbon dioxide saturated mixtures as well as polystyrene-carbon dioxide-dimethyl ether and polystyrene-carbon dioxide-nitrogen ternary saturated mixtures. Good agreement is achieved between theoretically predicted and experimentally determined solubilities, both for binary and ternary mixtures. Acceptable agreement with swelling ratios is found with no free parameters. Up-to-date pure component Sanchez-Lacombe characteristic parameters are provided for carbon dioxide, dimethyl ether, low-density polyethylene, nitrogen, polylactide, linear and branched polypropylene, and polystyrene. Pure fluid low-density polyethylene and nitrogen parameters exhibit more moderate success while still providing acceptable quantitative estimations. Mixture estimations are found to have more moderate success where pure components are not as well represented. The Sanchez-Lacombe equation of state is found to correctly predict the anomalous reversal of solubility temperature dependence for low critical point fluids through the observation of this behaviour in polystyrene nitrogen mixtures.

8.
Environ Sci Technol ; 51(15): 8552-8560, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-28704061

RESUMEN

Separation of toxic organic pollutants from industrial effluents is a great environmental challenge. Herein, an acid-base engineered foam is employed for separation of micro-oil droplets from an aqueous solution. In acidic or basic environments, acid-base polymers acquire surface charge due to protonation or dissociation of surface active functional groups. This property is invoked to adsorb crude oil microdroplets from water using polyester polyurethane (PESPU) foam. The physicochemical surface properties of the foam were characterized using X-ray photoelectron spectroscopy, inverse gas chromatography, electrokinetic analysis, and micro-computed tomography. Using the surface charge of the foam and oil droplets, the solution pH (5.6) for maximum separation efficacy was predicted. This optimal pH was verified through underwater wetting behavior and adsorption experiments. The droplet adsorption onto the foam was governed by physisorption, and the driving forces were attributed to electrostatic attraction and Lifshitz-van der Waals forces. The foam was regenerated and reused multiple times by simple compression. The lowest trace oil content in the retentate was 3.6 mg L-1, and all oil droplets larger than 140 nm were removed. This work lays the foundation for the development of a new class of engineered foam adsorbents with the potential to revolutionize water treatment technologies.


Asunto(s)
Residuos Industriales , Polímeros , Adsorción , Espectroscopía de Fotoelectrones , Purificación del Agua , Microtomografía por Rayos X
9.
Biomacromolecules ; 16(12): 3925-35, 2015 Dec 14.
Artículo en Inglés | MEDLINE | ID: mdl-26536276

RESUMEN

Melt blending is one of the most promising techniques for eliminating poly(lactic acid)'s (PLA) numerous drawbacks. However, success in a typical melt blending process is usually achieved through the inclusion of high concentrations of a second polymeric phase which can compromise PLA's green nature. In a pioneering study, we introduce the production of in situ microfibrillar PLA/polyamide-6 (PA6) blends as a cost-effective and efficient technique for improving PLA's properties while minimizing the required PA6 content. Predominantly biobased products, with only 3 wt % of in situ generated PA6 microfibrils (diameter ≈200 nm), were shown to have dramatically improved crystallization kinetics, mechanical properties, melt elasticity and strength, and foaming-ability compared with PLA. Crucially, the microfibrillar blends were produced using an environmentally friendly and cost-effective process. Both of these qualities are essential in guarantying the viability of the proposed technique for overcoming the obstacles associated with the vast commercialization of PLA.


Asunto(s)
Caprolactama/análogos & derivados , Tecnología Química Verde , Ácido Láctico/química , Polímeros/química , Caprolactama/química , Cristalización , Elasticidad , Cinética , Poliésteres , Reología , Resistencia a la Tracción
10.
Int J Mol Sci ; 16(5): 9196-216, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25915031

RESUMEN

A visualization system to observe crystal and bubble formation in polymers under high temperature and pressure has been developed. Using this system, polymer can be subjected to a programmable thermal treatment to simulate the process in high pressure differential scanning calorimetry (HPDSC). With a high-temperature/high-pressure view-cell unit, this system enables in situ observation of crystal formation in semi-crystalline polymers to complement thermal analyses with HPDSC. The high-speed recording capability of the camera not only allows detailed recording of crystal formation, it also enables in situ capture of plastic foaming processes with a high temporal resolution. To demonstrate the system's capability, crystal formation and foaming processes of polypropylene/carbon dioxide systems were examined. It was observed that crystals nucleated and grew into spherulites, and they grew at faster rates as temperature decreased. This observation agrees with the crystallinity measurement obtained with the HPDSC. Cell nucleation first occurred at crystals' boundaries due to CO2 exclusion from crystal growth fronts. Subsequently, cells were nucleated around the existing ones due to tensile stresses generated in the constrained amorphous regions between networks of crystals.


Asunto(s)
Rastreo Diferencial de Calorimetría , Polímeros/química , Termodinámica , Rastreo Diferencial de Calorimetría/instrumentación , Rastreo Diferencial de Calorimetría/métodos
11.
Artículo en Inglés | MEDLINE | ID: mdl-38684012

RESUMEN

Silica aerogels exhibit exceptional characteristics such as mesoporosity, light weight, high surface area, and pore volume. Nevertheless, their utilization in industrial settings remains constrained due to their brittleness, moisture sensitivity, and costly synthesis procedure. Several studies have proved that adding nanofillers, such as carbon nanotubes (CNT) or graphene nanoplatelets (GNP), can improve the mechanical strength of the aerogels. The incorporation of nanofillers is often accompanied by agglomeration and pore blockage, which, in turn, deteriorates the surface area, pore volume, and low density. Including flexible melamine foam (MF) as a scaffold for the silica aerogel and nanofiller composite can prevent the restacking of the nanofillers through π-π interaction, hence maintaining the incredible properties of aerogels and improving their mechanical properties. CNT, GNP, and the polymeric silica precursor, polyvinyltrimethoxysilane (PVTMS), were added to a MF, at varying concentrations, to fabricate the MF-aerogel nanocomposites. Surfactant and sonication were utilized to ensure a homogeneous dispersion of the nanofillers in the system. The presence of MF prevented the agglomeration of nanofillers, resulting in lower density and relatively higher surface properties (SBET up to 929 m2·g-1 and pore volume up to 4.34 cc·g-1). Moreover, the MF-supported samples could endure 80% strain without breakage and showed an outstanding compressive strength of up to ∼20 MPa. These aerogel nanocomposites also demonstrated an excellent volatile organic compound (∼2680 mg·g-1) and cationic dye adsorption (∼10 mg·g-1).

12.
Nanoscale ; 2024 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-39163094

RESUMEN

With the advent of the information age, electromagnetic hazards are becoming more serious. In view of environmental protection, green electromagnetic interference (EMI) shielding materials with little or no secondary reflection have become the ideal choice. In this paper, by freeze-drying, high-temperature carbonization, coating and impregnation backfilling, we prepared carbonized Ni-MOF/reduced graphene oxide/silver nanowire-polyimide@polyethylene glycol composites (Ni@C/r-GO/AgNW-PI@PEG) with gradient conductivity based on impedance matching. The impedance matching layer Ni@C/r-GO-300 reduces the reflection of electromagnetic waves from the surface of the material, the dissipation layer Ni@C/r-GO-600 provides excellent electromagnetic wave dissipation capability, and the reflection layer AgNW-PI ensures that the electromagnetic waves are reflected back into the material. Meanwhile, the EMI shielding performance value of Ni@C/r-GO/AgNW-PI@PEG reaches 62.3 dB with an ultra-low reflectivity (R) of 0.04. In CST simulations, the intrinsic mechanism of electromagnetic energy loss within the material is revealed by energy loss density cloud maps. In addition, heat from high-temperature objects is transferred through the highly thermally conductive AgNW-PI membrane to the long-channel Ni@C/r-GO backbone. Therefore, the composites prepared on the basis of impedance matching will accelerate the use of EMI shielding materials for the thermal management of portable electronic devices and battery heat dissipation packaging.

13.
ACS Appl Mater Interfaces ; 16(32): 42687-42703, 2024 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-39082691

RESUMEN

In this paper, we develop high aspect ratio nanofibrils from a polycaprolactone-based thermoplastic polyurethane (TPU) and evaluate their performance as a toughening agent. Poly(methyl methacrylate) (PMMA) was chosen as the matrix material because of its inherent brittleness and low resistance to sudden shocks and impact. We show that the addition of as little as 3 wt % of TPU nanofibrils with an average diameter of ∼98 nm and very high aspect ratio can significantly improve both the tensile toughness (∼212%) and impact strength (∼40%) of the chosen matrix (i.e., PMMA) without compromising its original strength, stiffness, and transparency. We compare the performance of TPU nanofibrils with TPU spherical particles─the form TPU typically manifests into when melt-mixed with an immiscible polymer. Our findings highlight that the structure of TPU plays a crucial role in determining the critical concentration of TPU needed for the brittle-ductile transition of the matrix. We also provide new and valuable insights into the unique interfacial interaction (i.e., formation of fibrillar bridges) observed between the PMMA matrix and TPU. We also show that the inclusion of 3 wt % of TPU nanofibrils can notably enhance resistance to creep deformation, even at temperatures close to the glass transition temperature of the matrix. Finally, we evaluate recyclability and demonstrate that the composite containing 3 wt % of TPU nanofibrils can be mechanically recycled without losing any properties. The proposed TPU nanofibrils can withstand repeated reprocessing at temperatures up to 190 °C due to their very high melting point and thermal stability. This presents the opportunity for them to be utilized not just with amorphous PMMA, but also with a range of other materials that can be processed at or below this temperature to remarkably improve their toughness without sacrificing strength and stiffness.

14.
ACS Appl Mater Interfaces ; 16(22): 29291-29304, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38776211

RESUMEN

In this study, we utilized in situ nanofibrillation of thermoplastic polyester ether elastomer (TPEE) within a high-density polyethylene (HDPE) matrix to enhance the rheological properties, foamability, and mechanical characteristics of the HDPE nanocomposite at both room and subzero temperatures. Due to the inherent polarity differences between these two components, TPEE is thermodynamically incompatible with the nonpolar HDPE. To address this compatibility issue, we employed a compatibilizer, styrene/ethylene-butylene/styrene copolymer-grafted maleic anhydride (SEBS-g-MA), to reduce the interfacial tension between the two blend components. In the initial step, we prepared a 10% masterbatch of HDPE/TPEE with and without the compatibilizer using a twin-screw extruder. Subsequently, we processed the 10% masterbatch further through spun bonding to create fiber-in-fiber composites. Scanning electron microscopy (SEM) analysis revealed a significant reduction in the spherical size of HDPE/TPEE particles following the inclusion of SEBS-g-MA, as well as a much smaller TPEE nanofiber size (approximately 60-70 nm for 5% TPEE). Moreover, extensional rheological testing revealed a notable enhancement in extensional rheological properties, with strain-hardening behavior being more pronounced in the compatibilized nanofibrillar composites compared to the noncompatibilized ones. SEM images of the foam structures depicted substantial improvement in the foamability of HDPE in terms of the cell size and density following the nanofibrillation process and the use of the compatibilizer. Ultimately, the in situ rubber fibrillation and enhancement of HDPE and TPEE interface using a compatibilizer led to increasing the HDPE ductility at room and subzero temperatures while maintaining its stiffness.

15.
Nanoscale ; 16(14): 6961-6972, 2024 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-38362794

RESUMEN

The complex hybrid nanostructure combining a two-dimensional (2D) conductive material and a hierarchical nanoscale skeleton plays an important role to enhance its piezoresistive sensitivity. To construct such a novel hybrid nanostructure, a piezoresistive sensor was designed with the following strategy to take the full advantages of 2D MXene and nanoscale fibrils: ethylene oxide propylene oxide random copolymer (EOPO) was grafted to ethylene-vinyl alcohol (EVOH) molecular chains and was foamed by an environmentally-friendly supercritical CO2 (scCO2) foaming technology to fabricate abundant nanoscale EVOH fibrils surrounding micropores; MXene featured as a 2D structure of nanoscale size that strongly interacted with this hierarchical nanoscale skeleton, and MXene not only convolved on nanoscale fibrils to generate bumps but also MXene covered the end of broken fibrils to build spots, and furthermore, MXene adhered on the soft EOPO embedded EVOH fibrils to form wrinkles, in which these bumps, spots and wrinkles assembled by highly conductive 2D MXene offered sufficient contacts when the hierarchical nanoscale skeleton was compressed (these contacts would then destruct when the skeleton recovered). Such an elaborated hybrid nanostructural design exploits the full potential of 2D MXene and hence achieves an ultra-high sensitivity of 6895.0 kPa-1 for this fabricated MXene piezoresistive sensor.

16.
Mater Horiz ; 10(10): 4423-4437, 2023 Oct 02.
Artículo en Inglés | MEDLINE | ID: mdl-37486618

RESUMEN

The development of layered polymer composites and foams offers a promising solution for achieving effective electromagnetic interference (EMI) shielding while minimizing secondary electromagnetic pollution. However, the current fabrication process is largely based on trial and error, with limited focus on optimizing geometry and microstructure. This often results in suboptimal electromagnetic wave reflection and the use of unnecessarily thick samples. In this study, an input impedance model was employed to guide the fabrication of layered PVDF composite foams. This approach optimized the void fraction (VF) and the thickness of each layer to achieve broadband low reflection. Moreover, hybrid heterostructures of SiCnw@MXene were incorporated into the PVDF composite foams as an absorption layer, while the conductive PVDF/CNT composite foams served as a shielding layer. Directed by theoretical computations, we found that combining 2.2 mm of PVDF/SiCnw@MXene composite foam (50% VF) and 1.6 mm of PVDF/CNT composite yielded EMI shielding effectiveness of 45 dB, with an average reflectivity (R) of 0.03 and an effective absorption bandwidth of 5.54 GHz (for R < 0.1) over the Ku-band (12.4-18 GHz). Importantly, the corresponding peak R was only 0.000017. Our work showcases a theoretically guided approach for developing absorption-dominant EMI shielding materials with broadband ultra-low reflection, paving the way for cutting-edge applications.

17.
ACS Appl Mater Interfaces ; 15(20): 24948-24967, 2023 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-37172315

RESUMEN

As the design and scalable technology development of tough, yet stiff, polymer nanocomposites receive attention in the automotive industry, fundamental understating of underlying toughening mechanisms at the nanoscale is inevitable. However, mechanical tests on rubber-toughened nanocomposites have shown that their overall fracture properties are significantly smaller than theoretical predictions. Our previous study showed that major factors in this regard are the simultaneous operation of different toughening mechanisms and the nanostructural features of the interface. As a result, it may be necessary to employ multiscale and multimechanism modeling strategies to accurately account for the contribution of each toughening mechanism. In this study, the effects of nanofibrillation (i.e., size, orientation, and dispersion) and interfacial tuning on the mechanical properties of nanofibrillated rubber-toughened nanocomposites are examined using molecular dynamics (MD) simulations. We report that by interfacial modification via grafting compatibilizer at the interface, nanofibrillated rubber-toughened polypropylene (PP) nanocomposite can achieve superior mechanical properties as a result of enhanced interfacial load transfer. Compared to pure ethylene propylene diene monomer rubber (EPDM)/PP system, an increase of 49% in energy absorbed per unit volume during fracture was achieved for 30% functionalized nanocomposites. Such an increase in energy dissipation was caused by a transition in the dominant crack propagation mechanism from interfacial slippage to crack-arresting behavior, owing to enhanced interfacial adhesion. MD simulations in conjunction with the multiscale model revealed that such a change in mechanism is caused by the formation of strong covalent bonds, interfacial friction, and the presence of a highly entangled polymeric network at the interface. Although the multiscale framework can be viewed as a road map for modeling the interface of various nanocomposite systems, the results obtained from our study may offer valuable insights for developing robust and scalable fabrication processes for nanofibrillated rubber-toughened nanocomposite structures, which pose significant technological challenges.

18.
ACS Appl Mater Interfaces ; 15(46): 53847-53858, 2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-37960885

RESUMEN

The fabrication of absorption-dominant electromagnetic interference (EMI) shielding materials is a pressing priority to prevent secondary electromagnetic pollution in miniaturized electronic devices and communication systems. Meeting this goal has remained a tough challenge to keep pace with the rapid evolution of electronics due to the complex compositional and structural design and narrow operating bands. This work articulates a sound and simple strategy to precisely modulate the electrical conductivity of reduced graphene oxide (rGO), as the building block in lightweight double-layered rGO-film/rGO-aerogel/polyvinyl-alcohol (PVA) composites, for efficient microwave absorption over the entire Ku-band frequency range. These constructs reasonably comprised a porous absorption structure built from parallel rGO sheets aligned and prepared via freeze casting followed by freeze drying. The electrical conductivity and impedance of this layer were tuned by varying the annealing temperature from 400 to 800 °C, thereby adjusting the degree of reduction and the absorption characteristic. This layer was backed by a highly conductive rGO film reduced at a high temperature of 1000 °C, with a reflectivity of 97.5%. The incorporation of this film ensured high EMI shielding effectiveness of the double-layered structure through the absorption-reflection-reabsorption mechanism, consistent with the predicted values based on calculated loss factors and the input impedance of the structure. Accordingly, at an average EMI shielding effectiveness of 57.59 dB, the reflection shielding effectiveness (SER) and reflectivity (R) of the assembled composites were optimized to be as low as 0.22 dB and 0.049, respectively. This equates to approximately 99.999% shielding (SET) and ∼95% absorptivity (A) of the incident wave. This study opens new avenues for the development of lightweight (with a density as low as 15 mg/cm3) absorption-dominant EMI shielding composite materials with promising EMI shielding efficiency and potential applications in modern electronics.

19.
RSC Adv ; 13(28): 19325, 2023 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-37377874

RESUMEN

[This corrects the article DOI: 10.1039/C6RA22607H.].

20.
Mater Horiz ; 10(4): 1392-1405, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36752062

RESUMEN

Geometric factors of nanofillers considerably govern the properties of conductive polymer composites (CPCs). This study provides insights into how geometrical alteration through nanotube-to-nanoribbon conversion affects the electrical properties of solid and microcellular CPCs. In this regard, polyvinylidene fluoride (PVDF)-based nanocomposites are synthesized using both the parent multi-walled carbon nanotube (MWCNT) and its chemically unzipped product, i.e., graphene nanoribbons (GNRs). Theoretical and experimental results show that GNR-based composites exhibit 1-4 orders greater conductivities than MWCNT-based composites at the same filler loading because of the larger number of filler-filler junctions as well as the significantly greater contact areas. On the other hand, the conductivities of MWCNT-based and GNR-based composites are significantly increased by 230 times and 121 times, respectively, through microcellular foaming. The effective rearrangements of rigid MWCNTs and flexible GNRs (having 4 and 5 orders less bending stiffness) for network formation during cellular growth are compared. The GNR-based composites also exhibit a superior dielectric permittivity (e.g., 2.6 times larger real permittivity at a representative frequency of 103 Hz and a nanofiller loading of 4.2 vol%) compared to their MWCNT-based counterparts. This study demonstrates how the modification of the carbon fillers and the polymer matrix can dramatically enhance EMI shielding.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda