Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Blood ; 122(8): 1494-504, 2013 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-23801629

RESUMEN

Exposure to nonself red blood cell (RBC) antigens, either from transfusion or pregnancy, may result in alloimmunization and incompatible RBC clearance. First described as a pregnancy complication 80 years ago, hemolytic disease of the fetus and newborn (HDFN) is caused by alloimmunization to paternally derived RBC antigens. Despite the morbidity/mortality of HDFN, women at risk for RBC alloimmunization have few therapeutic options. Given that alloantibodies to antigens in the KEL family are among the most clinically significant, we developed a murine model with RBC-specific expression of the human KEL antigen to evaluate the impact of maternal/fetal KEL incompatibility. After exposure to fetal KEL RBCs during successive pregnancies with KEL-positive males, 21 of 21 wild-type female mice developed anti-KEL alloantibodies; intrauterine fetal anemia and/or demise occurred in a subset of KEL-positive pups born to wild type, but not agammaglobulinemic mothers. Similar to previous observations in humans, pregnancy-associated alloantibodies were detrimental in a transfusion setting, and transfusion-associated alloantibodies were detrimental in a pregnancy setting. This is the first pregnancy-associated HDFN model described to date, which will serve as a platform to develop targeted therapies to prevent and/or mitigate the dangers of RBC alloantibodies to fetuses and newborns.


Asunto(s)
Anemia Hemolítica/inmunología , Eritrocitos/citología , Isoanticuerpos/inmunología , Sistema del Grupo Sanguíneo de Kell/inmunología , Modelos Animales , Anemia Hemolítica/genética , Animales , Transfusión Sanguínea , Citocinas/metabolismo , Femenino , Proteínas Fluorescentes Verdes/metabolismo , Inmunoglobulina G/inmunología , Sistema del Grupo Sanguíneo de Kell/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Embarazo , Preñez
2.
NMR Biomed ; 25(9): 1104-11, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22302519

RESUMEN

Glioblastoma is the most common primary brain tumor and is uniformly fatal despite aggressive surgical and adjuvant therapy. As survival is short, it is critical to determine the value of therapy early on in treatment. Improved early predictive assessment would allow neuro-oncologists to personalize and adjust or change treatment sooner to maximize the use of efficacious therapy. During carcinogenesis, tumor suppressor genes can be silenced by aberrant histone deacetylation. This epigenetic modification has become an important target for tumor therapy. Suberoylanilide hydroxamic acid (SAHA, Vorinostat, Zolinza) is an orally active, potent inhibitor of histone deacetylase (HDAC) activity. A major shortcoming of the use of HDAC inhibitors in the treatment of patients with brain tumors is the lack of reliable biomarkers to predict and determine response. Histological evaluation may reflect tumor viability following treatment, but is an invasive procedure and impractical for glioblastoma. Another problem is that response to SAHA therapy is associated with tumor redifferentiation and cytostasis rather than tumor size reduction, thus limiting the use of traditional imaging methods. A noninvasive method to assess drug delivery and efficacy is needed. Here, we investigated whether changes in (1)H MRS metabolites could render reliable biomarkers for an early response to SAHA treatment in an orthotopic animal model for glioma. Untreated tumors exhibited significantly elevated alanine and lactate levels and reduced inositol, N-acetylaspartate and creatine levels, typical changes reported in glioblastoma relative to normal brain tissues. The (1)H MRS-detectable metabolites of SAHA-treated tumors were restored to those of normal-like brain tissues. In addition, reduced inositol and N-acetylaspartate were found to be potential biomarkers for mood alteration and depression, which may also be alleviated with SAHA treatment. Our study suggests that (1)H MRS can provide reliable metabolic biomarkers at the earliest stage of SAHA treatment to predict the therapeutic response.


Asunto(s)
Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/uso terapéutico , Ácidos Hidroxámicos/uso terapéutico , Afecto/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Encéfalo/efectos de los fármacos , Encéfalo/metabolismo , Encéfalo/patología , Neoplasias Encefálicas/enzimología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioma/enzimología , Glioma/genética , Glioma/metabolismo , Inhibidores de Histona Desacetilasas/farmacología , Ácidos Hidroxámicos/farmacología , Liasas Intramoleculares/genética , Liasas Intramoleculares/metabolismo , Imagen por Resonancia Magnética , Masculino , Metaboloma/efectos de los fármacos , Pronóstico , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Endogámicas F344 , Resultado del Tratamiento , Vorinostat
3.
Cancers (Basel) ; 13(6)2021 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-33799550

RESUMEN

Sonic hedgehog subtype of medulloblastoma (SHH MB) with metastasis or specific clinical or molecular alteration shas a poor prognosis and current therapy results in long-term cognitive impairment in the majority of survivors. Thus, a great need exists for new targeted therapeutic approaches to more effectively treat SHH MB in children. Imipramine blue (IB), a novel molecule with anti-tumor properties, inhibits the NADPH oxidase (NOX) family of enzymes, which are critical for SHH MB survival and treatment resistance. In this study, IB was encapsulated within a liposome to form a liposomal nanoparticle, Liposome-IB (Lipo-IB). This complex has the ability to cross the blood-brain barrier and be preferentially taken up by tumor cells within the brain. We demonstrated in vitro that Lipo-IB treatment caused a dose-dependent decrease in SHH MB cell viability and migration. Short-term administration of single agent Lipo-IB treatment of SHH MB in vivo significantly inhibited tumor growth, reduced the tumor volume, including a complete tumor response, and improved survival compared to control treated mice, without any observable toxicity. We conclude that Lipo-IB is a potential novel nanoparticle-based therapeutic for the treatment of SHH MB that warrants further preclinical safety and efficacy testing for development towards clinical investigation.

4.
J Chromatogr A ; 945(1-2): 65-81, 2002 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-11860146

RESUMEN

Flow inhomogeneity and axial development in low-pressure chromatographic columns have been studied by magnetic resonance imaging velocimetry. The columns studied included (a) an 11.7-mm I.D. column packed with either 50 microm diameter porous polyacrylamide, or 99 or 780 microm diameter impermeable polystyrene beads, and (b) a 5-mm I.D. column commercially packed with 10 microm polymeric beads. The packing methods included gravity settling, slurry packing, ultrasonication, and dry packing with vibration. The magnetic resonance method used averaged apparent fluid velocity over both column cross-sections and fluid displacements greater than one particle diameter and hence permits assessment of macroscopic flow non-uniformities. The results confirm that now non-uniformities induced by the conical distributor of the 11.7-mm I.D. column or the presence of voids at the column entrance relax on a length scale of the column radius. All of the 11.7-mm I.D. columns examined exhibit near wall channeling within a few particle diameters of the wall. The origins of this behavior are demonstrated by imaging of the radial dependence of the local porosity for a column packed with 780 microm beads. Columns packed with the 99-microm beads exhibit reduced flow in a region extending from ten to three-to-five particle diameters from the wall. This velocity reduction is consistent with a reduced porosity of 0.35 in this region as compared to approximately 0.43 in the bulk of the column. Ultrasonicated and dry-packed columns exhibit enhanced flow in a region located between approximately eight and 20 particle diameters from the wall. This enhancement maybe caused by packing density inhomogeneity and/or particle size segregation caused by vibration during the packing process. No significant non-uniformities on length scales of 20 microm or greater were observed in the commercially packed column packed with 10 microm particles.


Asunto(s)
Cromatografía Liquida/métodos , Cromatografía Liquida/instrumentación , Imagen por Resonancia Magnética , Presión
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda