Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Opt Lett ; 46(3): 484-487, 2021 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-33528390

RESUMEN

We have derived a systematic method to calculate the photonic band structures and mode field profiles of arbitrary space-time periodic media by adopting the plane wave expansion method and extending to the space-time domain. We have applied the proposed method to a photonic crystal with time periodic permittivity, i.e., the Floquet photonic crystal, and showed that the method efficiently predicts driving-induced opening of frequency and momentum gaps and breaking of mirror symmetry in the photonic band structures. This method enables systematic investigation of various optical phenomena in space-time periodic media, such as nonreciprocal propagation of light, parametric processes, and photonic Floquet topological phases.

2.
Opt Express ; 27(9): 12762-12773, 2019 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-31052812

RESUMEN

We investigate the electrical control of frequency conversion from a time-varying interdigitated photo-conductive antenna (IPCA) and time-varying metasurface in the terahertz (THz) frequency range. Ultrafast near-infrared (NIR) optical pulses rapidly modify the conductivities of the IPCA and metasurface; however, external voltages can retard this conductivity transition. Thus, external voltages can be used to control the frequency conversion process based on the interaction between the THz waves and the time-varying surfaces. In the IPCA, both frequency up- and down-conversion processes are suppressed by external voltages. However, in the metasurface, the down-conversion is dramatically suppressed by external voltages, whereas the suppression on the up-conversion is less effective.

3.
Sci Adv ; 8(40): eabo6220, 2022 Oct 07.
Artículo en Inglés | MEDLINE | ID: mdl-36206346

RESUMEN

Periodically driven systems are ubiquitously found in both classical and quantum regimes. In the field of photonics, these Floquet systems have begun to provide insight into how time periodicity can extend the concept of spatially periodic photonic crystals and metamaterials to the time domain. However, despite the necessity arising from the presence of nonreciprocal coupling between states in a photonic Floquet medium, a unified non-Hermitian band structure description remains elusive. We experimentally reveal the unique Bloch-Floquet and non-Bloch band structures of a photonic Floquet medium emulated in the microwave regime with a one-dimensional array of time-periodically driven resonators. These non-Hermitian band structures are shown to be two measurable distinct subsets of complex eigenfrequency surfaces of the photonic Floquet medium defined in complex momentum space.

4.
Sci Rep ; 7: 42833, 2017 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-28216677

RESUMEN

Graphene, which is a two-dimensional crystal of carbon atoms arranged in a hexagonal lattice, has attracted a great amount of attention due to its outstanding mechanical, thermal and electronic properties. Moreover, graphene shows an exceptionally strong tunable light-matter interaction that depends on the Fermi level - a function of chemical doping and external gate voltage - and the electromagnetic resonance provided by intentionally engineered structures. In the optical regime, the nonlinearities of graphene originated from the Pauli blocking have already been exploited for mode-locking device applications in ultrafast laser technology, whereas nonlinearities in the terahertz regime, which arise from a reduction in conductivity due to carrier heating, have only recently been confirmed experimentally. Here, we investigated two key factors for controlling nonlinear interactions of graphene with an intense terahertz field. The induced transparencies of graphene can be controlled effectively by engineering meta-atoms and/or changing the number of charge carriers through electrical gating. Additionally, nonlinear phase changes of the transmitted terahertz field can be observed by introducing the resonances of the meta-atoms.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda