RESUMEN
Genome sequencing of cancers often reveals mosaics of different subclones present in the same tumour1-3. Although these are believed to arise according to the principles of somatic evolution, the exact spatial growth patterns and underlying mechanisms remain elusive4,5. Here, to address this need, we developed a workflow that generates detailed quantitative maps of genetic subclone composition across whole-tumour sections. These provide the basis for studying clonal growth patterns, and the histological characteristics, microanatomy and microenvironmental composition of each clone. The approach rests on whole-genome sequencing, followed by highly multiplexed base-specific in situ sequencing, single-cell resolved transcriptomics and dedicated algorithms to link these layers. Applying the base-specific in situ sequencing workflow to eight tissue sections from two multifocal primary breast cancers revealed intricate subclonal growth patterns that were validated by microdissection. In a case of ductal carcinoma in situ, polyclonal neoplastic expansions occurred at the macroscopic scale but segregated within microanatomical structures. Across the stages of ductal carcinoma in situ, invasive cancer and lymph node metastasis, subclone territories are shown to exhibit distinct transcriptional and histological features and cellular microenvironments. These results provide examples of the benefits afforded by spatial genomics for deciphering the mechanisms underlying cancer evolution and microenvironmental ecology.
Asunto(s)
Neoplasias de la Mama , Carcinoma Intraductal no Infiltrante , Evolución Clonal , Células Clonales , Genómica , Femenino , Humanos , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Carcinoma Intraductal no Infiltrante/genética , Carcinoma Intraductal no Infiltrante/patología , Evolución Clonal/genética , Células Clonales/metabolismo , Células Clonales/patología , Mutación , Microambiente Tumoral/genética , Secuenciación Completa del Genoma , Transcriptoma , Reproducibilidad de los Resultados , Microdisección , AlgoritmosRESUMEN
Across species, sperm maturation involves the dramatic reconfiguration of chromatin into highly compact nuclei that enhance hydrodynamic ability and ensure paternal genomic integrity. This process is mediated by the replacement of histones by sperm nuclear basic proteins, also referred to as protamines. In humans, a carefully balanced dosage between two known protamine genes is required for optimal fertility. However, it remains unknown how their proper balance is regulated and how defects in balance may lead to compromised fertility. Here, we show that a nucleolar protein, modulo, a homolog of nucleolin, mediates the histone-to-protamine transition during Drosophila spermatogenesis. We find that modulo mutants display nuclear compaction defects during late spermatogenesis due to decreased expression of autosomal protamine genes (including Mst77F) and derepression of Y-linked multicopy Mst77F homologs (Mst77Y), leading to the mutant's known sterility. Overexpression of Mst77Y in a wild-type background is sufficient to cause nuclear compaction defects, similar to modulo mutant, indicating that Mst77Y is a dominant-negative variant interfering with the process of histone-to-protamine transition. Interestingly, ectopic overexpression of Mst77Y caused decompaction of X-bearing spermatids nuclei more frequently than Y-bearing spermatid nuclei, although this did not greatly affect the sex ratio of offspring. We further show that modulo regulates these protamine genes at the step of transcript polyadenylation. We conclude that the regulation of protamines mediated by modulo, ensuring the expression of functional ones while repressing dominant-negative ones, is critical for male fertility.
Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Humanos , Animales , Masculino , Drosophila melanogaster/metabolismo , Histonas/genética , Histonas/metabolismo , Protaminas/genética , Protaminas/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Semen/metabolismo , Espermatozoides/metabolismo , Cromatina/metabolismo , Espermatogénesis/genética , Drosophila/genéticaRESUMEN
We probe the microstructural yielding dynamics of a concentrated colloidal system by performing creep/recovery tests with simultaneous collection of coherent scattering data via X-ray Photon Correlation Spectroscopy (XPCS). This combination of rheology and scattering allows for time-resolved observations of the microstructural dynamics as yielding occurs, which can be linked back to the applied rheological deformation to form structure-property relations. Under sufficiently small applied creep stresses, examination of the correlation in the flow direction reveals that the scattering response recorrelates with its predeformed state, indicating nearly complete microstructural recovery, and the dynamics of the system under these conditions slows considerably. Conversely, larger creep stresses increase the speed of the dynamics under both applied creep and recovery. The data show a strong connection between the microstructural dynamics and the acquisition of unrecoverable strain. By comparing this relationship to that predicted from homogeneous, affine shearing, we find that the yielding transition in concentrated colloidal systems is highly heterogeneous on the microstructural level.
RESUMEN
BACKGROUND & AIMS: Patients who discontinue nucleo(s)tide analogue therapy are at risk of viral rebound and severe hepatitis flares, necessitating intensive off-treatment follow-up. METHODS: We studied the association between hepatitis B surface antigen (HBsAg) and hepatitis B virus (HBV) DNA levels at off-treatment follow-up week 24 (FU W24), with subsequent clinical relapse, and HBsAg loss in a multicenter cohort of hepatitis B e antigen (HBeAg)-negative patients with chronic hepatitis B who discontinued nucleo(s)tide analogue therapy. RESULTS: We studied 475 patients, 82% Asian, and 55% treated with entecavir. Patients with higher HBV DNA levels at FU W24 had a higher risk of clinical relapse (hazard ratio [HR], 1.576; P < .001) and a lower chance of HBsAg loss (HR, 0.454; P < .001). Similarly, patients with higher HBsAg levels at FU W24 had a higher risk of clinical relapse (HR, 1.579; P < .001) and a lower chance of HBsAg loss (HR, 0.263; P < .001). A combination of both HBsAg <100 IU/mL and HBV DNA <100 IU/mL at FU W24 identified patients with excellent outcomes (9.9% clinical relapse and 58% HBsAg loss at 216 weeks of follow-up). Conversely, relapse rates were high and HBsAg loss rates negligible among patients with both HBsAg >100 IU/mL and HBV DNA >100 IU/mL (P < .001). CONCLUSIONS: Among HBeAg-negative patients with chronic hepatitis B who discontinued antiviral therapy and who did not experience clinical relapse before FU W24, serum levels of HBV DNA and HBsAg at FU W24 can be used to predict subsequent clinical relapse and HBsAg clearance. A combination of HBsAg <100 IU/mL with HBV DNA <100 IU/mL identifies patients with a low risk of relapse and excellent chances of HBsAg loss and could potentially be used as an early surrogate end point for studies aiming at finite therapy in HBV.
Asunto(s)
Antígenos de Superficie de la Hepatitis B , Hepatitis B Crónica , Humanos , Antígenos e de la Hepatitis B , Hepatitis B Crónica/diagnóstico , Hepatitis B Crónica/tratamiento farmacológico , ADN Viral , Antivirales/uso terapéutico , Estudios de Seguimiento , Virus de la Hepatitis B/genética , Recurrencia , Resultado del TratamientoRESUMEN
Liquid polymorphism is an intriguing phenomenon that has been found in a few single-component systems, the most famous being water. By supercooling liquid Te to more than 130 K below its melting point and performing simultaneous small-angle and wide-angle X-ray scattering measurements, we observe clear maxima in its thermodynamic response functions around 615 K, suggesting the possible existence of liquid polymorphism. A close look at the underlying structural evolution shows the development of intermediate-range order upon cooling, most strongly around the thermodynamic maxima, which we attribute to bond-orientational ordering. The striking similarities between our results and those of water, despite the lack of hydrogen-bonding and tetrahedrality in Te, indicate that water-like anomalies may be a general phenomenon among liquid systems with competing bond- and density-ordering.
RESUMEN
The neocortex, the center for higher brain function, first emerged in mammals and has become massively expanded and folded in humans, constituting almost half the volume of the human brain. Primary microcephaly, a developmental disorder in which the brain is smaller than normal at birth, results mainly from there being fewer neurons in the neocortex because of defects in neural progenitor cells (NPCs). Outer radial glia (oRGs), NPCs that are abundant in gyrencephalic species but rare in lissencephalic species, are thought to play key roles in the expansion and folding of the neocortex. However, how oRGs expand, whether they are necessary for neocortical folding, and whether defects in oRGs cause microcephaly remain important questions in the study of brain development, evolution, and disease. Here, we show that oRG expansion in mice, ferrets, and human cerebral organoids requires cyclin-dependent kinase 6 (CDK6), the mutation of which causes primary microcephaly via an unknown mechanism. In a mouse model in which increased Hedgehog signaling expands oRGs and intermediate progenitor cells and induces neocortical folding, CDK6 loss selectively decreased oRGs and abolished neocortical folding. Remarkably, this function of CDK6 in oRG expansion did not require its kinase activity, was not shared by the highly similar CDK4 and CDK2, and was disrupted by the mutation causing microcephaly. Therefore, our results indicate that CDK6 is conserved to promote oRG expansion, that oRGs are necessary for neocortical folding, and that defects in oRG expansion may cause primary microcephaly.
Asunto(s)
Quinasa 6 Dependiente de la Ciclina , Células Ependimogliales , Microcefalia , Neocórtex , Animales , Quinasa 6 Dependiente de la Ciclina/genética , Quinasa 6 Dependiente de la Ciclina/metabolismo , Células Ependimogliales/citología , Células Ependimogliales/enzimología , Hurones , Proteínas Hedgehog/metabolismo , Humanos , Ratones , Microcefalia/genética , Neocórtex/anomalías , Neocórtex/enzimología , Células-Madre Neurales/citología , Células-Madre Neurales/enzimología , Organoides/embriologíaRESUMEN
The spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the main target for neutralizing antibodies (NAbs). The S protein trimer is anchored in the virion membrane in its prefusion (preS) but metastable form. The preS protein has been stabilized by introducing two or six proline substitutions, to generate stabilized, soluble 2P or HexaPro (6P) preS proteins. Currently, it is not known which form is the most immunogenic. Here, we generated recombinant vesicular stomatitis virus (rVSV) expressing preS-2P, preS-HexaPro, and native full-length S, and compared their immunogenicity in mice and hamsters. The rVSV-preS-HexaPro produced and secreted significantly more preS protein compared to rVSV-preS-2P. Importantly, rVSV-preS-HexaPro triggered significantly more preS-specific serum IgG antibody than rVSV-preS-2P in both mice and hamsters. Antibodies induced by preS-HexaPro neutralized the B.1.1.7, B.1.351, P.1, B.1.427, and B.1.617.2 variants approximately two to four times better than those induced by preS-2P. Furthermore, preS-HexaPro induced a more robust Th1-biased cellular immune response than preS-2P. A single dose (104 pfu) immunization with rVSV-preS-HexaPro and rVSV-preS-2P provided complete protection against challenge with mouse-adapted SARS-CoV-2 and B.1.617.2 variant, whereas rVSV-S only conferred partial protection. When the immunization dose was lowered to 103 pfu, rVSV-preS-HexaPro induced two- to sixfold higher antibody responses than rVSV-preS-2P in hamsters. In addition, rVSV-preS-HexaPro conferred 70% protection against lung infection whereas only 30% protection was observed in the rVSV-preS-2P. Collectively, our data demonstrate that both preS-2P and preS-HexaPro are highly efficacious but preS-HexaPro is more immunogenic and protective, highlighting the advantages of using preS-HexaPro in the next generation of SARS-CoV-2 vaccines.
Asunto(s)
Prolina , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Desarrollo de Vacunas , Estomatitis Vesicular , Vacunas Virales , Animales , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/genética , COVID-19/inmunología , COVID-19/prevención & control , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Cricetinae , Humanos , Ratones , Prolina/inmunología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Estomatitis Vesicular/inmunología , Estomatitis Vesicular/prevención & control , Estomatitis Vesicular/virología , Vesiculovirus/inmunología , Proteínas Virales/inmunología , Vacunas Virales/inmunologíaRESUMEN
With the rapid increase in SARS-CoV-2 cases in children, a safe and effective vaccine for this population is urgently needed. The MMR (measles/mumps/rubella) vaccine has been one of the safest and most effective human vaccines used in infants and children since the 1960s. Here, we developed live attenuated recombinant mumps virus (rMuV)-based SARS-CoV-2 vaccine candidates using the MuV Jeryl Lynn (JL2) vaccine strain backbone. The soluble prefusion SARS-CoV-2 spike protein (preS) gene, stablized by two prolines (preS-2P) or six prolines (preS-6P), was inserted into the MuV genome at the P-M or F-SH gene junctions in the MuV genome. preS-6P was more efficiently expressed than preS-2P, and preS-6P expression from the P-M gene junction was more efficient than from the F-SH gene junction. In mice, the rMuV-preS-6P vaccine was more immunogenic than the rMuV-preS-2P vaccine, eliciting stronger neutralizing antibodies and mucosal immunity. Sera raised in response to the rMuV-preS-6P vaccine neutralized SARS-CoV-2 variants of concern, including the Delta variant equivalently. Intranasal and/or subcutaneous immunization of IFNAR1-/- mice and golden Syrian hamsters with the rMuV-preS-6P vaccine induced high levels of neutralizing antibodies, mucosal immunoglobulin A antibody, and T cell immune responses, and were completely protected from challenge by both SARS-CoV-2 USA-WA1/2020 and Delta variants. Therefore, rMuV-preS-6P is a highly promising COVID-19 vaccine candidate, warranting further development as a tetravalent MMR vaccine, which may include protection against SARS-CoV-2.
Asunto(s)
Vacunas contra la COVID-19 , COVID-19 , Vacuna contra el Sarampión-Parotiditis-Rubéola , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Eficacia de las Vacunas , Animales , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/prevención & control , Vacunas contra la COVID-19/genética , Vacunas contra la COVID-19/inmunología , Inmunogenicidad Vacunal , Vacuna contra el Sarampión-Parotiditis-Rubéola/genética , Vacuna contra el Sarampión-Parotiditis-Rubéola/inmunología , Mesocricetus , Ratones , Virus de la Parotiditis/genética , Virus de la Parotiditis/inmunología , Prolina/genética , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunologíaRESUMEN
An ideal cancer therapeutic strategy involves the selective killing of cancer cells without affecting the surrounding normal cells. However, researchers have failed to develop such methods for achieving selective cancer cell death because of shared features between cancerous and normal cells. In this study, we have developed a therapeutic strategy called the cancer-specific insertions-deletions (InDels) attacker (CINDELA) to selectively induce cancer cell death using the CRISPR-Cas system. CINDELA utilizes a previously unexplored idea of introducing CRISPR-mediated DNA double-strand breaks (DSBs) in a cancer-specific fashion to facilitate specific cell death. In particular, CINDELA targets multiple InDels with CRISPR-Cas9 to produce many DNA DSBs that result in cancer-specific cell death. As a proof of concept, we demonstrate here that CINDELA selectively kills human cancer cell lines, xenograft human tumors in mice, patient-derived glioblastoma, and lung patient-driven xenograft tumors without affecting healthy human cells or altering mouse growth.
Asunto(s)
Sistemas CRISPR-Cas , Mutación INDEL , Neoplasias/genética , Animales , Muerte Celular/genética , Roturas del ADN de Doble Cadena , Xenoinjertos , Humanos , RatonesRESUMEN
BACKGROUND & AIMS: Chronic HCV infection results in abnormal immunological alterations, which are not fully normalized after viral elimination by direct-acting antiviral (DAA) treatment. Herein, we longitudinally examined phenotypic, transcriptomic, and epigenetic alterations in peripheral blood regulatory T (Treg) cells from patients with chronic HCV infection before, during, and after DAA treatment. METHODS: Patients with chronic genotype 1b HCV infection who achieved sustained virologic response by DAA treatment and age-matched healthy donors were recruited. Phenotypic characteristics of Treg cells were investigated through flow cytometry analysis. Moreover, the transcriptomic and epigenetic landscapes of Treg cells were analyzed using RNA sequencing and ATAC-seq (assay for transposase-accessible chromatin with sequencing) analysis. RESULTS: The Treg cell population - especially the activated Treg cell subpopulation - was expanded in peripheral blood during chronic HCV infection, and this expansion was sustained even after viral clearance. RNA sequencing analysis revealed that viral clearance did not abrogate the inflammatory features of these Treg cells, such as Treg activation and TNF signaling. Moreover, ATAC-seq analysis showed inflammatory imprinting in the epigenetic landscape of Treg cells from patients, which remained after treatment. These findings were further confirmed by intracellular cytokine staining, demonstrating that Treg cells exhibited inflammatory features and TNF production in chronic HCV infection that were maintained after viral clearance. CONCLUSIONS: Overall, our results showed that during chronic HCV infection, the expanded Treg cell population acquired inflammatory features at phenotypic, transcriptomic, and epigenetic levels, which were maintained even after successful viral elimination by DAA treatment. Further studies are warranted to examine the clinical significance of sustained inflammatory features in the Treg cell population after recovery from chronic HCV infection. IMPACT AND IMPLICATIONS: During chronic HCV infection, several immune components are altered both quantitatively and qualitatively. The recent introduction of direct-acting antivirals has led to high cure rates. Nevertheless, we have demonstrated that inflammatory features of Treg cells are maintained at phenotypic, transcriptomic, and epigenetic levels even after successful DAA treatment. Further in-depth studies are required to investigate the long-term clinical outcomes of patients who have recovered from chronic HCV infection.
Asunto(s)
Antivirales , Epigénesis Genética , Hepatitis C Crónica , Linfocitos T Reguladores , Humanos , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Hepatitis C Crónica/tratamiento farmacológico , Hepatitis C Crónica/inmunología , Hepatitis C Crónica/virología , Hepatitis C Crónica/genética , Antivirales/uso terapéutico , Masculino , Persona de Mediana Edad , Femenino , Respuesta Virológica Sostenida , Hepacivirus/genética , Hepacivirus/efectos de los fármacos , Hepacivirus/inmunología , AdultoRESUMEN
BACKGROUND & AIMS: The risk of hepatocellular carcinoma (HCC) and hepatic decompensation persists after hepatitis B surface antigen (HBsAg) seroclearance. This study aimed to develop and validate a machine learning model to predict the risk of liver-related outcomes (LROs) following HBsAg seroclearance. METHODS: A total of 4,787 consecutive patients who achieved HBsAg seroclearance between 2000 and 2022 were enrolled from six centers in South Korea and a territory-wide database in Hong Kong, comprising the training (n = 944), internal validation (n = 1,102), and external validation (n = 2,741) cohorts. Three machine learning-based models were developed and compared in each cohort. The primary outcome was the development of any LRO, including HCC, decompensation, and liver-related death. RESULTS: During a median follow-up of 55.2 (IQR 30.1-92.3) months, 123 LROs were confirmed (1.1%/person-year) in the Korean cohort. The model with the best predictive performance in the training cohort was selected as the final model (designated as PLAN-B-CURE), which was constructed using a gradient boosting algorithm and seven variables (age, sex, diabetes, alcohol consumption, cirrhosis, albumin, and platelet count). Compared to previous HCC prediction models, PLAN-B-CURE showed significantly superior accuracy in the training cohort (c-index: 0.82 vs. 0.63-0.70, all p <0.001; area under the receiver-operating characteristic curve: 0.86 vs. 0.62-0.72, all p <0.01; area under the precision-recall curve: 0.53 vs. 0.13-0.29, all p <0.01). PLAN-B-CURE showed a reliable calibration function (Hosmer-Lemeshow test p >0.05) and these results were reproduced in the internal and external validation cohorts. CONCLUSION: This novel machine learning model consisting of seven variables provides reliable risk prediction of LROs after HBsAg seroclearance that can be used for personalized surveillance. IMPACT AND IMPLICATIONS: Using large-scale multinational data, we developed a machine learning model to predict the risk of liver-related outcomes (i.e., hepatocellular carcinoma, decompensation, and liver-related death) after the functional cure of chronic hepatitis B (CHB). The new model named PLAN-B-CURE was constructed using seven variables (age, sex, alcohol consumption, diabetes, cirrhosis, serum albumin, and platelet count) and a gradient boosting machine algorithm, and it demonstrated significantly better predictive accuracy than previous models in both the training and validation cohorts. The inclusion of diabetes and significant alcohol intake as model inputs suggests the importance of metabolic risk factor management after the functional cure of CHB. Using seven readily available clinical factors, PLAN-B-CURE, the first machine learning-based model for risk prediction after the functional cure of CHB, may serve as a basis for individualized risk stratification.
RESUMEN
NF-κB essential modulator (NEMO) is a key regulatory protein that functions during NF-κB- and interferon-mediated signaling in response to extracellular stimuli and pathogen infections. Tight regulation of NEMO is essential for host innate immune responses and for maintenance of homeostasis. Here, we report that the E3 ligase MARCH2 is a novel negative regulator of NEMO-mediated signaling upon bacterial or viral infection. MARCH2 interacted directly with NEMO during the late phase of infection and catalyzed K-48-linked ubiquitination of Lys326 on NEMO, which resulted in its degradation. Deletion of MARCH2 resulted in marked resistance to bacterial/viral infection, along with increased innate immune responses both in vitro and in vivo. In addition, MARCH2-/- mice were more susceptible to LPS challenge due to massive production of cytokines. Taken together, these findings provide new insight into the molecular regulation of NEMO and suggest an important role for MARCH2 in homeostatic control of innate immune responses.
Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Ubiquitinas/metabolismo , Animales , Línea Celular , Femenino , Eliminación de Gen , Humanos , Inmunidad Innata/fisiología , Péptidos y Proteínas de Señalización Intracelular/genética , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos ICR , Ratones Noqueados , FN-kappa B/metabolismo , Transducción de Señal/genética , Transcriptoma , Ubiquitina-Proteína Ligasas/genética , UbiquitinaciónRESUMEN
Single-entity electrochemistry has gained significant attention for the analysis of individual cells, nanoparticles, and droplets, which is leveraged by robust electrochemical techniques such as chronoamperometry and cyclic voltammetry (CV) to extract information about single entities, including size, kinetics, mass transport, etc. For an in-depth understanding such as dynamic interaction between the electrode and a single entity, the unconventional fast electrochemical technique is essential for time-resolved analysis. This fast experimental technique is unfortunately hindered by a substantial nonfaradaic response. In this work, we introduce fast-scan sinusoidal voltammetry (FSSV) combined with a short-time Fourier transform (STFT) for analyzing single emulsion droplets. Utilizing ultramicroelectrode and fast potential sweeps up to apparent 200 V/s, we achieved high temporal resolution (8 ms per voltammogram) to capture the current signals during droplet collisions. STFT analysis reveals the amplitude and phase changes, allowing for the accurate detection of collision events even in the absence of redox species. By adopting an algorithm of drift-free baseline subtraction, a conventional CV shape was obtained in FSSV. The reacted charge from the single-entity voltammogram at every 8 ms was also plotted. This method effectively addresses limitations in traditional techniques, providing insights into emulsion dynamics such as droplet contact and droplet breakdown.
RESUMEN
We report a novel detection method for single aqueous droplets in organic solvents by the collisional contact of the droplet, inducing the partial deformation of the ultramicroelectrode (UME) surface. For various chemical reactions in organic solvents, water impurities affect the catalytic activity, leading to a loss of productivity and selectivity. Therefore, it is necessary to monitor the water content of organic solvents in real time between many chemical production processes, from the laboratory to the industrial scale. Our method enables the detection of water contamination by real-time monitoring of the electrochemical signals or observing morphological changes in the microelectrode. When an aqueous droplet collides with the UME, the contact area of the electrode is electrolyzed, forming pits on the surface where the droplet falls. Current transient analysis shows a unique current spike corresponding to the reaction inside the adsorbed single aqueous droplet, which differs from those detected by the faradaic/nonfaradaic reaction of collision of other particles. Moreover, this analytical method can record the history of collision events from pits on the UME surface, implying that inspecting the UME surface could be a quick screening method for solvent contamination. Based on a comparison of the electrochemical signals and morphological changes of the electrode after each event, the sizes of the pits and droplets are related. A COMSOL simulation is performed to explain the shape of the peak current and pit formation during collision events. This experimental concept elucidates the dynamic behavior of aqueous droplets on a positively biased metal electrode.
RESUMEN
In neuroimaging studies, combining data collected from multiple study sites or scanners is becoming common to increase the reproducibility of scientific discoveries. At the same time, unwanted variations arise by using different scanners (inter-scanner biases), which need to be corrected before downstream analyses to facilitate replicable research and prevent spurious findings. While statistical harmonization methods such as ComBat have become popular in mitigating inter-scanner biases in neuroimaging, recent methodological advances have shown that harmonizing heterogeneous covariances results in higher data quality. In vertex-level cortical thickness data, heterogeneity in spatial autocorrelation is a critical factor that affects covariance heterogeneity. Our work proposes a new statistical harmonization method called spatial autocorrelation normalization (SAN) that preserves homogeneous covariance vertex-level cortical thickness data across different scanners. We use an explicit Gaussian process to characterize scanner-invariant and scanner-specific variations to reconstruct spatially homogeneous data across scanners. SAN is computationally feasible, and it easily allows the integration of existing harmonization methods. We demonstrate the utility of the proposed method using cortical thickness data from the Social Processes Initiative in the Neurobiology of the Schizophrenia(s) (SPINS) study. SAN is publicly available as an R package.
Asunto(s)
Corteza Cerebral , Imagen por Resonancia Magnética , Esquizofrenia , Humanos , Imagen por Resonancia Magnética/normas , Imagen por Resonancia Magnética/métodos , Esquizofrenia/diagnóstico por imagen , Esquizofrenia/patología , Corteza Cerebral/diagnóstico por imagen , Corteza Cerebral/anatomía & histología , Neuroimagen/métodos , Neuroimagen/normas , Procesamiento de Imagen Asistido por Computador/métodos , Procesamiento de Imagen Asistido por Computador/normas , Masculino , Femenino , Adulto , Distribución Normal , Grosor de la Corteza CerebralRESUMEN
Tenascin-C is an extracellular matrix glycoprotein strongly expressed in coronary atherosclerotic plaque. Aptamers are single-stranded oligonucleotides that bind to specific target molecules with high affinity. This study hypothesized that tenascin-C expression at atherosclerotic plaque in vivo could be detected by tenascin-C specific aptamers using positron emission tomography (PET). This paper reports the radiosynthesis of a fluorine-18 (18F)-labeled tenascin-C aptamer for the biodistribution and PET imaging of the tenascin-C expression in apolipoprotein E-deficient (ApoE-/-) mice. The aortas ApoE-/- mice showed significantly increased positive areas of Oil red O staining than control C57BL/6 mice, and tenascin-C expression was detected in foam cells accumulated in the subendothelial lesions of ApoE-/- mice. The ex vivo biodistribution of the 18F-labeled tenascin-C aptamer showed significantly increased uptake at the aorta of ApoE-/- mice, and ex vivo autoradiography of aorta revealed the high accumulation of the 18F-labeled tenascin-C aptamer in the atherosclerotic lesions of ApoE-/- mice, which was consistent with the location of the atherosclerotic plaques detected by Oil red O staining. PET imaging of the 18F-labeled tenascin-C aptamer revealed a significantly higher mean standardized uptake in the aorta of the ApoE-/- mice than the control C57BL/6 mice. These data highlight the potential use of tenascin-C aptamer to diagnose atherosclerotic lesions in vivo.
Asunto(s)
Aterosclerosis , Compuestos Azo , Radioisótopos de Flúor , Placa Aterosclerótica , Ratones , Animales , Placa Aterosclerótica/patología , Tenascina/metabolismo , Distribución Tisular , Ratones Endogámicos C57BL , Aterosclerosis/metabolismo , Tomografía de Emisión de Positrones/métodos , Matriz Extracelular/metabolismo , Oligonucleótidos/metabolismo , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Modelos Animales de Enfermedad , Ratones NoqueadosRESUMEN
Interleukin-2 (IL-2), a cytokine with pleiotropic immune effects, was the first approved cancer immunotherapy agent. However, IL-2 is associated with systemic toxicity due to binding with its ligand IL-2Rα, such as vascular leakage syndrome, limiting its clinical applications. Despite efforts to extend the half-life of IL-2 and abolish IL-2Rα interactions, the risk of toxicity remains unresolved. In this study, we developed the bispecific fusion protein MB2033, comprising a novel IL-2 variant (IL-2v) connected to anti-programmed death ligand 1 (PD-L1) via a silenced Fc domain. The IL-2v of MB2033 exhibits attenuated affinity for IL-2Rßγ without binding to IL-2Rα. The binding affinity of MB2033 for PD-L1 is greater than that for IL-2Rßγ, indicating its preferential targeting of PD-L1+ tumor cells to induce tumor-specific immune activation. Accordingly, MB2033 exhibited significantly reduced regulatory T cell activation, while inducing comparable CD8+ T cell activation to recombinant human IL-2 (rhIL-2). MB2033 induced lower immune cell expansion and reduced cytokine levels compared with rhIL-2 in human peripheral blood mononuclear cells, indicating a decreased risk of peripheral toxicity. MB2033 exhibited superior anti-tumor efficacy, including tumor growth inhibition and complete responses, compared with avelumab monotherapy in an MC38 syngeneic mouse model. In normal mice, MB2033 was safer than non-α IL-2v and tolerable up to 30 mg/kg. These preclinical results provide evidence of the dual advantages of MB2033 with an enhanced safety and potent clinical efficacy for cancer treatment.
Asunto(s)
Antígeno B7-H1 , Interleucina-2 , Proteínas Recombinantes de Fusión , Animales , Ratones , Humanos , Proteínas Recombinantes de Fusión/farmacología , Proteínas Recombinantes de Fusión/genética , Antígeno B7-H1/metabolismo , Antígeno B7-H1/antagonistas & inhibidores , Femenino , Ratones Endogámicos C57BL , Inmunoterapia/métodos , Línea Celular Tumoral , Melanoma Experimental/tratamiento farmacológico , Melanoma Experimental/inmunologíaRESUMEN
MOTIVATION: Allowance for increasingly large samples is a key to identify the association of genetic variants with Alzheimer's disease (AD) in genome-wide association studies (GWAS). Accordingly, we aimed to develop a method that incorporates patients with mild cognitive impairment and unknown cognitive status in GWAS using a machine learning-based AD prediction model. RESULTS: Simulation analyses showed that weighting imputed phenotypes method increased the statistical power compared to ordinary logistic regression using only AD cases and controls. Applied to real-world data, the penalized logistic method had the highest AUC (0.96) for AD prediction and weighting imputed phenotypes method performed well in terms of power. We identified an association (P<5.0×10-8) of AD with several variants in the APOE region and rs143625563 in LMX1A. Our method, which allows the inclusion of individuals with mild cognitive impairment, improves the statistical power of GWAS for AD. We discovered a novel association with LMX1A. AVAILABILITY AND IMPLEMENTATION: Simulation codes can be accessed at https://github.com/Junkkkk/wGEE_GWAS.
Asunto(s)
Enfermedad de Alzheimer , Estudio de Asociación del Genoma Completo , Humanos , Estudio de Asociación del Genoma Completo/métodos , Incertidumbre , Estudios de Asociación Genética , Fenotipo , Aprendizaje Automático , Enfermedad de Alzheimer/genéticaRESUMEN
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) marks the third novel ß-coronavirus to cause significant human mortality in the last two decades. Although vaccines are available, too few have been administered worldwide to keep the virus in check and to prevent mutations leading to immune escape. To determine if antibodies could be identified with universal coronavirus activity, plasma from convalescent subjects was screened for IgG against a stabilized pre-fusion SARS-CoV-2 spike S2 domain, which is highly conserved between human ß-coronavirus. From these subjects, several S2-specific human monoclonal antibodies (hmAbs) were developed that neutralized SARS-CoV-2 with recognition of all variants of concern (VoC) tested (Beta, Gamma, Delta, Epsilon, and Omicron). The hmAb 1249A8 emerged as the most potent and broad hmAb, able to recognize all human ß-coronavirus and neutralize SARS-CoV and MERS-CoV. 1249A8 demonstrated significant prophylactic activity in K18 hACE2 mice infected with SARS-CoV-2 lineage A and lineage B Beta, and Omicron VoC. 1249A8 delivered as a single 4 mg/kg intranasal (i.n.) dose to hamsters 12 hours following infection with SARS-CoV-2 Delta protected them from weight loss, with therapeutic activity further enhanced when combined with 1213H7, an S1-specific neutralizing hmAb. As little as 2 mg/kg of 1249A8 i.n. dose 12 hours following infection with SARS-CoV Urbani strain, protected hamsters from weight loss and significantly reduced upper and lower respiratory viral burden. These results indicate in vivo cooperativity between S1 and S2 specific neutralizing hmAbs and that potent universal coronavirus neutralizing mAbs with therapeutic potential can be induced in humans and can guide universal coronavirus vaccine development.
Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Anticuerpos Monoclonales/farmacología , Anticuerpos Neutralizantes/farmacología , Anticuerpos Antivirales , COVID-19/terapia , Vacunas contra la COVID-19 , Humanos , Ratones , SARS-CoV-2 , Pérdida de PesoRESUMEN
The disease severity of coronavirus disease 2019 (COVID-19) varies considerably from asymptomatic to serious, with fatal complications associated with dysregulation of innate and adaptive immunity. Lymphoid depletion in lymphoid tissues and lymphocytopenia have both been associated with poor disease outcomes in patients with COVID-19, but the mechanisms involved remain elusive. In this study, human angiotensin-converting enzyme 2 (hACE2) transgenic mouse models susceptible to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection were used to investigate the characteristics and determinants of lethality associated with the lymphoid depletion observed in SARS-CoV-2 infection. The lethality of Wuhan SARS-CoV-2 infection in K18-hACE2 mice was characterized by severe lymphoid depletion and apoptosis in lymphoid tissues related to fatal neuroinvasion. The lymphoid depletion was associated with a decreased number of antigen-presenting cells (APCs) and their suppressed functionality below basal levels. Lymphoid depletion with reduced APC function was a specific feature observed in SARS-CoV-2 infection but not in influenza A infection and had the greatest prognostic value for disease severity in murine COVID-19. Comparison of transgenic mouse models resistant and susceptible to SARS-CoV-2 infection revealed that suppressed APC function could be determined by the hACE2 expression pattern and interferon-related signaling. Thus, we demonstrated that lymphoid depletion associated with suppressed APC function characterizes the lethality of COVID-19 mouse models. Our data also suggest a potential therapeutic approach to prevent the severe progression of COVID-19 by enhancing APC functionality.