RESUMEN
Hypoxic microenvironments exist in developing embryonic tissues and determine stem cell fate. We previously demonstrated that hypoxic priming plays roles in lineage commitment of embryonic stem cells. In the present study, we found that hypoxia-primed embryoid bodies (Hyp-EBs) efficiently differentiate into the myogenic lineage, resulting in the induction of the myogenic marker MyoD, which was not mediated by hypoxia-inducible factor 1α (HIF1α) or HIF2α, but rather by Sp1 induction and binding to the MyoD promoter. Knockdown of Sp1 in Hyp-EBs abrogated hypoxia-induced MyoD expression and myogenic differentiation. Importantly, in the cardiotoxin-muscle injury mice model, Hyp-EB transplantation facilitated muscle regeneration in vivo, whereas transplantation of Sp1-knockdown Hyp-EBs failed to do. Moreover, we compared microRNA (miRNA) expression profiles between EBs under normoxia versus hypoxia and found that hypoxia-mediated Sp1 induction was mediated by the suppression of miRNA-92a, which directly targeted the 3' untranslated region (3' UTR) of Sp1. Further, the inhibitory effect of miRNA-92a on Sp1 in luciferase assay was abolished by a point mutation in specific sequence in the Sp1 3' UTR that is required for the binding of miRNA-92a. Collectively, these results suggest that hypoxic priming enhances EB commitment to the myogenic lineage through miR-92a/Sp1/MyoD regulatory axis, suggesting a new pathway that promotes myogenic-lineage differentiation.
Asunto(s)
Diferenciación Celular/genética , Hipoxia de la Célula/genética , Linaje de la Célula/genética , MicroARNs/metabolismo , Células Madre Embrionarias de Ratones/metabolismo , Desarrollo de Músculos/genética , Proteína MioD/metabolismo , Factor de Transcripción Sp1/metabolismo , Regiones no Traducidas 3' , Animales , Células Cultivadas , Técnicas de Silenciamiento del Gen , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Regiones Promotoras Genéticas , Factor de Transcripción Sp1/genética , TransfecciónRESUMEN
The identification of HMGB1 as a late-mediator in sepsis has highlighted HMGB1 as a promising therapeutic target for sepsis treatment. Recent studies have revealed that annexin A5, a 35 kDa Ca2+-dependent phospholipid binding protein, exerts anti-inflammatory effect by inhibiting LPS binding to TLR4/MD2 complex. Annexin A5 administration has been shown to protect against endotoxin lethality even when the treatment was given after the early cytokine response, which prompted our group to suspect that annexin A5 may inhibit the binding of HMGB1, as well as endotoxin to TLR4. Here we suggest annexin A5 as a new inhibitor of HMGB1-mediated pro-inflammatory cytokine production and coagulation in sepsis. We first confirmed the inhibitory role of annexin A5 in LPS-induced production of pro-inflammatory cytokines both in vitro and in vivo. We observed that annexin A5 protects against tissue damage and organ dysfunction during endotoxemia in vivo. We then assessed the inhibiting role of annexin A5 in HMGB1/TLR4 interaction, and showed that annexin A5 treatment reduces HMGB1-mediated cytokines IL6 and TNFα both in vitro and in vivo. Finally, we confirmed that anticoagulant property of annexin A5 persists in various septic conditions including elevated HMGB1. Overall, we suggest annexin A5 as an alternative therapeutic approach for controlling HMGB1-mediated pro-inflammation and coagulation in patients with sepsis.
RESUMEN
BACKGROUND: Electroacupuncture (EA) is a modern application based on combination of traditional manual acupuncture and electrotherapy that is frequently recommended as an adjuvant treatment for ischemic stroke. EA preconditioning can ameliorate blood-brain barrier (BBB) dysfunction and brain edema in ischemia-reperfusion injury; however, its mechanism remains unclear. This study investigated the preventive effects of EA preconditioning, particularly on BBB injury, followed by a transient middle cerebral artery occlusion (MCAO) model in mice. RESULTS: Mice were treated with EA (20 min) at Baihui (GV20) and Dazhui (GV14) acupoints once a day for 3 days before ischemic injury. Infarct volume, neurological deficits, oxidative stress, Evans blue leakage and brain edema were evaluated at 24 h after ischemia-reperfusion injury. EA preconditioning significantly decreased infarct volume and improved neurological function even after ischemic injury. In addition, both Evans blue leakage and water content were significantly reduced in EA preconditioned mice. Whereas the expression of tight junction proteins, ZO-1 and claudin-5, were remarkably increased by EA preconditioning. Mice with EA preconditioning showed the reduction of astrocytic aquaporin 4, which is involved in BBB permeabilization. In addition, we found that EA preconditioning decreased reactive oxygen species (ROS) in brain tissues after ischemic injury. The expression of NADPH oxidase 4 (NOX4), not NOX2, was significantly suppressed in EA preconditioned mice. CONCLUSIONS: These results suggest that EA preconditioning improve neural function after ischemic injury through diminishing BBB disruption and brain edema. And, the reduction of ROS generation and NOX4 expression by EA preconditioning might be involved in BBB recovery. Therefore, EA may serve as a potential preventive strategy for patients at high risk of ischemic stroke.
Asunto(s)
Barrera Hematoencefálica/metabolismo , Isquemia Encefálica , Regulación hacia Abajo , Electroacupuntura , Regulación Enzimológica de la Expresión Génica , NADPH Oxidasas/biosíntesis , Especies Reactivas de Oxígeno/metabolismo , Accidente Cerebrovascular , Animales , Barrera Hematoencefálica/patología , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Isquemia Encefálica/prevención & control , Masculino , Ratones , NADPH Oxidasa 4 , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/prevención & controlRESUMEN
AIM: Increasing evidence suggests that probucol, a lipid-lowering agent with anti-oxidant activities, may be useful for the treatment of ischemic stroke with hyperlipidemia via reduction in cholesterol and neuroinflammation. In this study we examined whether probucol could protect against brain ischemic injury via anti-neuroinflammatory action in normal and hyperlipidemic mice. METHODS: Primary mouse microglia and murine BV2 microglia were exposed to lipopolysaccharide (LPS) for 3 h, and the release NO, PGE2, IL-1ß and IL-6, as well as the changes in NF-κB, MAPK and AP-1 signaling pathways were assessed. ApoE KO mice were fed a high-fat diet containing 0.004%, 0.02%, 0.1% (wt/wt) probucol for 10 weeks, whereas normal C57BL/6J mice received probucol (3, 10, 30 mg·kg(-1)·d(-1), po) for 4 d. Then all the mice were subjected to focal cerebral ischemia through middle cerebral artery occlusion (MCAO). The neurological deficits were scored 24 h after the surgery, and then brains were removed for measuring the cerebral infarct size and the production of pro-inflammatory mediators. RESULTS: In LPS-treated BV2 cells and primary microglial cells, pretreatment with probucol (1, 5, 10 µmol/L) dose-dependently inhibited the release of NO, PGE2, IL-1ß and IL-6, which occurred at the transcription levels. Furthermore, the inhibitory actions of probucol were associated with the downregulation of the NF-κB, MAPK and AP-1 signaling pathways. In the normal mice with MCAO, pre-administration of probucol dose-dependently decreased the infarct volume and improved neurological function. These effects were accompanied by the decreased production of pro-inflammatory mediators (iNOS, COX-2, IL-1, IL-6). In ApoE KO mice fed a high-fat diet, pre-administration of 0.1% probucol significantly reduced the infarct volume, improved the neurological deficits following MCAO, and decreased the total- and LDL-cholesterol levels. CONCLUSION: Probucol inhibits LPS-induced microglia activation and ameliorates cerebral ischemic injury in normal and hyperlipidemic mice via its anti-neuroinflammatory actions, suggesting that probucol has potential for the treatment of patients with or at risk for ischemic stroke and hyperlipidemia.
Asunto(s)
Isquemia Encefálica/complicaciones , Isquemia Encefálica/tratamiento farmacológico , Hiperlipidemias/complicaciones , Lipopolisacáridos/farmacología , Microglía/efectos de los fármacos , Probucol/farmacología , Probucol/uso terapéutico , Animales , Apolipoproteínas E/genética , Isquemia Encefálica/patología , Dieta Alta en Grasa , Dinoprostona/metabolismo , Relación Dosis-Respuesta a Droga , Hiperlipidemias/metabolismo , Infarto/complicaciones , Infarto/tratamiento farmacológico , Infarto/patología , Interleucina-1beta/metabolismo , Interleucina-6/metabolismo , Masculino , Ratones , Ratones Noqueados , Microglía/citología , Óxido Nítrico/metabolismo , Cultivo Primario de Células , Transducción de Señal/efectos de los fármacosRESUMEN
We report on a molecularly tailored 1:1 donor-acceptor (D-A) charge-transfer (CT) cocrystal that manifests strongly red-shifted CT luminescence characteristics, as well as noteworthy reconfigurable self-assembling behaviors. A loosely packed molecular organization is obtained as a consequence of the noncentrosymmetric chemical structure of molecule A1, which gives rise to considerable free volume and weak intermolecular interactions. The stacking features of the CT complex result in an external stimuli-responsive molecular stacking reorganization between the mixed and demixed phases of the D-A pair. Accordingly, high-contrast fluorescence switching (redâblue) is realized on the basis of the strong alternation of the electronic properties between the mixed and demixed phases. A combination of structural, spectroscopic, and computational studies reveal the underlying mechanism of this stimuli-responsive behavior.
RESUMEN
Location of membrane proteins is often stabilized by PDZ domain-containing scaffolding proteins. Using the yeast two-hybrid screening, we found that neurexin 1 interacted with multi-PDZ domain protein 1 (MUPP1) through PDZ domain. Neurexin 2 and 3 also interacted with MUPP1. MUPP1 and neurexin 1 were co-localized in cultured cells. These results suggest a novel mechanism for localizing neurexin 1 to synaptic sites.
Asunto(s)
Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neuronas/citología , Neuronas/metabolismo , Dominios PDZ , Animales , Proteínas de Unión al Calcio , Proteínas de la Membrana , Ratones , Unión Proteica , Transporte de ProteínasRESUMEN
(1) Background: Peptides are appealing as pharmacological materials because they are easily produced, safe, and tolerable. Despite increasing gum-care awareness, periodontitis is still prevalent and is influenced by factors like high sugar consumption, smoking, and aging. Porphyromonas gingivalis is considered a major etiologic agent of periodontitis and activates the NLR family pyrin domain containing 3 (NLRP3) but is absent in melanoma 2 (AIM2) inflammasomes, resulting in pro-inflammatory cytokine release. (2) Methods: We examined the anti-inflammatory effects of 18 peptides derived from human stromal cell-derived factor-1 (SDF-1) on THP-1 macrophages. Inflammation was induced by P. gingivalis, and the anti-inflammatory effects were analyzed using molecular biological techniques. In a mouse periodontitis model, alveolar bone resorption was assessed using micro-CT. (3) Results: Of the 18 SDF-1-derived peptides, S10 notably reduced IL-1ß and TNF-α secretion. S10 also diminished the P. gingivalis-induced expression of NLRP3, AIM2, ASC (apoptosis-associated speck-like protein), caspase-1, and IL-1ß. Furthermore, S10 attenuated the enhanced TLR (toll-like receptor) signaling pathway and decreased the phosphorylation of nuclear factor-κB (NF-κB) and mitogen-activated protein kinases (MAPKs). In addition, S10 mitigated alveolar bone loss in our P. gingivalis-induced mouse model of periodontitis. (4) Conclusions: S10 suppressed TLR/NF-κB/NLRP3 inflammasome signaling and the AIM2 inflammasome in our P. gingivalis-induced murine periodontitis model, which suggests that it has potential use as a therapeutic treatment for periodontitis.
RESUMEN
Two genes on chromosome 21, namely dual specificity tyrosine phosphorylation-regulated kinase 1A (Dyrk1A) and regulator of calcineurin 1 (RCAN1), have been implicated in some of the phenotypic characteristics of Down syndrome, including the early onset of Alzheimer disease. Although a link between Dyrk1A and RCAN1 and the nuclear factor of activated T cells (NFAT) pathway has been reported, it remains unclear whether Dyrk1A directly interacts with RCAN1. In the present study, Dyrk1A is shown to directly interact with and phosphorylate RCAN1 at Ser(112) and Thr(192) residues. Dyrk1A-mediated phosphorylation of RCAN1 at Ser(112) primes the protein for the GSK3ß-mediated phosphorylation of Ser(108). Phosphorylation of RCAN1 at Thr(192) by Dyrk1A enhances the ability of RCAN1 to inhibit the phosphatase activity of calcineurin (Caln), leading to reduced NFAT transcriptional activity and enhanced Tau phosphorylation. These effects are mediated by the enhanced binding of RCAN1 to Caln and its extended half-life caused by Dyrk1A-mediated phosphorylation. Furthermore, an increased expression of phospho-Thr(192)-RCAN1 was observed in the brains of transgenic mice overexpressing the Dyrk1A protein. These results suggest a direct link between Dyrk1A and RCAN1 in the Caln-NFAT signaling and Tau hyperphosphorylation pathways, supporting the notion that the synergistic interaction between the chromosome 21 genes RCAN1 and Dyrk1A is associated with a variety of pathological features associated with DS.
Asunto(s)
Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas Musculares/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Animales , Calcineurina/genética , Calcineurina/metabolismo , Proteínas de Unión al Calcio , Cromosomas Humanos Par 21/genética , Cromosomas Humanos Par 21/metabolismo , Proteínas de Unión al ADN , Síndrome de Down/genética , Síndrome de Down/metabolismo , Glucógeno Sintasa Quinasa 3/genética , Glucógeno Sintasa Quinasa 3/metabolismo , Glucógeno Sintasa Quinasa 3 beta , Células HEK293 , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Transgénicos , Proteínas Musculares/genética , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Fosforilación/genética , Unión Proteica/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Tirosina Quinasas/genética , Transducción de Señal/genética , Transcripción Genética/genética , Proteínas tau/genética , Proteínas tau/metabolismo , Quinasas DyrKRESUMEN
Dual-specificity tyrosine(Y)-phosphorylation-regulated kinase 1A (Dyrk1A) is a protein kinase that might be responsible for mental retardation and early onset of Alzheimer's disease in Down's syndrome patients. Dyrk1A plays a role in many cellular pathways through phosphorylation of diverse substrate proteins; however, its role in synaptic vesicle exocytosis is poorly understood. Munc18-1, a central regulator of neurotransmitter release, interacts with Syntaxin 1 and X11α. Syntaxin 1 is a key soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein involved in synaptic vesicle docking/fusion events, and X11α modulates amyloid precursor protein processing and ß amyloid generation. In this study, we demonstrate that Dyrk1A interacts with and phosphorylates Munc18-1 at the Thr(479) residue. The phosphorylation of Munc18-1 at Thr(479) by Dyrk1A stimulated binding of Munc18-1 to Syntaxin 1 and X11α. Furthermore, the levels of phospho-Thr(479) -Munc18-1 were enhanced in the brains of transgenic mice over-expressing Dyrk1A protein, providing in vivo evidence of Munc18-1 phosphorylation by Dyrk1A. These results reveal a link between Munc18-1 and Dyrk1A in synaptic vesicle trafficking and amyloid precursor protein processing, suggesting that up-regulated Dyrk1A in Down's syndrome and Alzheimer's disease brains may contribute to some pathological features, including synaptic dysfunction and cognitive defect through abnormal phosphorylation of Munc18-1.
Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas Munc18/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Sintaxina 1/metabolismo , Adenosina Trifosfato/farmacocinética , Animales , Encéfalo/metabolismo , Línea Celular Transformada , Humanos , Inmunoprecipitación , Ratones , Ratones Noqueados , Proteínas Munc18/deficiencia , Proteínas Munc18/genética , Mutación/fisiología , Isótopos de Fósforo/farmacocinética , Fosforilación/genética , Unión Proteica/efectos de los fármacos , Unión Proteica/genética , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/farmacología , Proteínas Tirosina Quinasas/genética , Proteínas Tirosina Quinasas/farmacología , Treonina/metabolismo , Transfección , Quinasas DyrKRESUMEN
We measured selenium, zinc, copper and manganese concentrations in the human milk of Korean mothers who gave birth to preterm infants, and compared these measurements with the recommended daily intakes. The samples of human milk were collected postpartum at week-1, -2, -4, -6, -8, and -12, from 67 mothers who gave birth to preterm infants (< 34 weeks, or birth weight < 1.8 kg). All samples were analyzed using atomic absorption spectrophotometry. The concentrations of selenium were 11.8 ± 0.5, 11.4 ± 0.8, 12.7 ± 0.9, 11.4 ± 0.8, 10.8 ± 0.9, and 10.5 ± 1.3 µg/L, zinc were 7.8 ± 0.5, 9.1 ± 0.8, 7.2 ± 0.9, 8.0 ± 0.8, 7.4 ± 0.9, and 6.6 ± 1.2 mg/L, copper were 506 ± 23.6, 489 ± 29.4, 384 ± 33.6, 356 ± 32.9, 303 ± 35.0, and 301 ± 48.0 µg/L and manganese were 133 ± 4.0, 127 ± 6.0, 125 ± 6.0, 123 ± 6.0, 127 ± 6.0, and 108 ± 9.0 µg/L at week-1, -2, -4, -6, -8, and -12, respectively. The concentrations of selenium and zinc meet the daily requirements but that of copper is low and of manganese exceeds daily requirements recommended by the American Academy of Pediatrics, Committee on Nutrition.
Asunto(s)
Leche Humana/química , Espectrofotometría Atómica , Oligoelementos/análisis , Adulto , Cobre/análisis , Femenino , Humanos , Recién Nacido , Recien Nacido Prematuro , Estudios Longitudinales , Manganeso/análisis , Periodo Posparto , República de Corea , Selenio/análisis , Zinc/análisisRESUMEN
Glioblastoma multiforme (GBM) is the most frequently occurring malignant brain tumor in adults and is characterized by a high degree of vascularization. Glioblastoma cells communicate with their microenvironment and stimulate blood vessel formation to support tumor progression. It has previously been reported that isolinderalactone induces apoptosis in GBM cells and suppresses the growth of glioblastoma xenograft tumors in vivo. Furthermore, isolinderalactone has been shown to inhibit the hypoxia-driven upregulation of vascular endothelial growth factor (VEGF) in U-87 GBM cells and strongly reduce VEGF-triggered angiogenesis in vitro and in vivo. In the present study, the direct angiogenic effect of GBM and the effect of isolinderalactone on tumor angiogenesis were investigated. Culture supernatants were obtained from U-87 cells under normoxic or hypoxic conditions to provide normoxic conditioned medium (NCM) and hypoxic conditioned medium (HCM) respectively. The NCM and HCM were each used to treat to human brain microvascular endothelial cells (HBMECs), and their effects were observed using wounding migration and tube formation assays. HCM increased the migration and capillary-like tube formation of HBMECs when compared with NCM, and treatment with isolinderalactone suppressed the HCM-driven angiogenesis in vitro. Additionally, isolinderalactone decreased HCM-triggered angiogenic sprouting in HBMECs in a 3D microfluidic device after the application of an HCM-containing interstitial fluid flow. Furthermore, isolinderalactone strongly reduced HCM-triggered angiogenesis in an in vivo Matrigel plug assay in mice. These findings provide evidence of angiogenesis inhibition by isolinderalactone, and demonstrate the anti-angiogenic effect of isolinderalactone against the direct angiogenic effect of GBM tumor cells.
RESUMEN
Micrometer- and submicrometer-scale surface roughness enhances osteoblast differentiation on titanium (Ti) substrates and increases bone-to-implant contact in vivo. However, the low surface wettability induced by surface roughness can retard initial interactions with the physiological environment. We examined chemical modifications of Ti surfaces [pretreated (PT), R(a) ≤ 0.3 µm; sand blasted/acid etched (SLA), R(a) ≥ 3.0 µm] in order to modify surface hydrophilicity. We designed coating layers of polyelectrolytes that did not alter the surface microstructure but increased surface ionic character, including chitosan (CHI), poly(L-glutamic acid) (PGA), and poly(L-lysine) (PLL). Ti disks were cleaned and sterilized. Surface chemical composition, roughness, wettability, and morphology of surfaces before and after polyelectrolyte coating were examined by X-ray photoelectron spectroscopy (XPS), contact mode profilometry, contact angle measurement, and scanning electron microscopy (SEM). High-resolution XPS spectra data validated the formation of polyelectrolyte layers on top of the Ti surface. The surface coverage of the polyelectrolyte adsorbed on Ti surfaces was evaluated with the pertinent SEM images and XPS peak intensity as a function of polyelectrolyte adsorption time on the Ti surface. PLL was coated in a uniform thin layer on the PT surface. CHI and PGA were coated evenly on PT, albeit in an incomplete monolayer. CHI, PGA, and PLL were coated on the SLA surface with complete coverage. The selected polyelectrolytes enhanced surface wettability without modifying surface roughness. These chemically modified surfaces on implant devices can contribute to the enhancement of osteoblast differentiation.
Asunto(s)
Electrólitos/química , Microtecnología/métodos , Polímeros/química , Prótesis e Implantes , Titanio/química , Humectabilidad , Concentración de Iones de HidrógenoRESUMEN
BACKGROUND: Dietary polyunsaturated fats increase liver injury in response to ethanol feeding. We evaluated the effect of dietary corn oil (CO), olive oil (OO), and beef tallow (BT) on fatty acid composition of liver microsomal membrane and acute acetaminophen hepatotoxicity. METHODS: Male Sprague-Dawley rats were fed 15% (wt/wt) CO, OO or BT for 6 weeks. After treatment with acetaminophen (600 mg/kg), samples of plasma and liver were taken for analyses of the fatty acid composition and toxicity. RESULTS: Treatment with acetaminophen significantly elevated levels of plasma GOT and GPT as well as hepatic TBARS but reduced hepatic GSH levels in CO compared to OO and BT groups. Acetaminophen significantly induced protein expression of cytochrome P450 2E1 in the CO group. In comparison with the CO diet, lower levels of linoleic acid, higher levels of oleic acids and therefore much lower ratios of linoleic to oleic acid were detected in rats fed OO and BT diets. CONCLUSIONS: Dietary OO and BT produces similar liver microsomal fatty acid composition and may account for less severe liver injury after acetaminophen treatment compared to animals fed diets with CO rich in linoleic acid. These findings imply that types of dietary fat may be important in the nutritional management of drug-induced hepatotoxicity.
Asunto(s)
Acetaminofén/toxicidad , Analgésicos no Narcóticos/toxicidad , Enfermedad Hepática Inducida por Sustancias y Drogas/prevención & control , Grasas de la Dieta/uso terapéutico , Ácidos Grasos Monoinsaturados/uso terapéutico , Ácidos Grasos/metabolismo , Microsomas Hepáticos/metabolismo , Animales , Enfermedad Hepática Inducida por Sustancias y Drogas/sangre , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Citocromo P-450 CYP2E1/metabolismo , Grasas/química , Grasas/uso terapéutico , Ácidos Grasos/sangre , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/enzimología , Hígado/metabolismo , Masculino , Microsomas Hepáticos/efectos de los fármacos , Aceite de Oliva , Oxidación-Reducción , Aceites de Plantas/química , Aceites de Plantas/uso terapéutico , Distribución Aleatoria , Ratas , Ratas Sprague-DawleyRESUMEN
Despite the recent rapid development of organic solar cells (OSCs), the low dielectric constant (ϵr =3-4) of organic semiconducting materials limits their performance lower than inorganic and perovskite solar cells. In this work, we introduce oligo(ethylene glycol) (OEG) side chains into the dicyanodistyrylbenzene-based non-fullerene acceptors (NIDCS) to increase its ϵr up to 5.4. In particular, a NIDCS acceptor bearing two triethylene glycol chains (NIDCS-EO3) shows VOC as high as 1.12â V in an OSC device with a polymer donor PTB7, which is attributed to reduced exciton binding energy of the blend film. Also, the larger size grain formation with well-ordered stacking structure of the NIDCS-EO3 blend film leads to the increased charge mobility and thus to the improved charge mobility balance, resulting in higher JSC , FF, and PCE in the OSC device compared to those of a device using the hexyl chain-based NIDCS acceptor (NIDCS-HO). Finally, we fabricate NIDCS-EO3 devices with various commercial donors including P3HT, DTS-F, and PCE11 to show higher photovoltaic performance than the NIDCS-HO devices, suggesting versatility of NIDCS-EO3.
RESUMEN
A metal-organic framework material named MIL-53(Fe), iron terephthalate, has been synthesized sovothermally at a relatively low temperature by not only conventional electric (CE) heating, but also by irradiation under ultrasound (US) and microwave (MW) conditions to gain an understanding of the accelerated syntheses induced by US and MW. The kinetics for nucleation and crystal growth were analyzed by measuring the crystallinity of MIL-53(Fe) under various conditions. The nucleation and crystal growth rates were estimated from crystallization curves of the change in crystallinity with reaction time. The activation energies and pre-exponential factors were calculated from Arrhenius plots. It was confirmed that the rate of crystallization (both nucleation and crystal growth) decreases in the order US>MW>>CE, and that the accelerated syntheses under US and MW conditions are due to increased pre-exponential factors rather than decreased activation energies. It is suggested that physical effects such as hot spots are more important than chemical effects in the accelerated syntheses induced by US and MW irradiation. The syntheses were also conducted in two steps to understand quantitatively the acceleration induced by MW and it was found that the acceleration in crystal growth is more important than the acceleration in nucleation, even though both processes are accelerated by MW irradiation.
RESUMEN
Aluminophosphate (AIPO) molecular sieve having extra-large pore (VFI structure with 18 membered rings) can be synthesized readily at 110 or 120 degrees C under microwave irradiation from a gel containing triethylamine (TEA) as a template or structure-directing agent. At high temperature of 130 degrees C, the VFI transforms into AFI with the increase of reaction time since the relative stability of VFI is less than that of AFI. Due to the rapid crystallization involved in the microwave method and instability of the porous material with extra-large pore (in this study, VFI structure), the material can be selectively synthesized only by microwave irradiation. The synthesized VFI from gel containing TEA is very stable that can be dried at 100-160 degrees C at atmospheric pressure without the phase-transformation into AIPO-8.
RESUMEN
Photobiomodulation using low-level light-emitting diode can be rapidly applied in neurological and physiological disorders safely and noninvasively. Photobiomodulation is effective for chronic diseases because of fewer side effects than drugs. Here we investigated the effects of photobiomodulation using light-emitting diode on amyloid plaques, gliosis, and neuronal loss to prevent and/or recover cognitive impairment, and optimal timing of photobiomodulation initiation for recovering cognitive function in a mouse model of Alzheimer's disease. 5XFAD mice were used as an Alzheimer's disease model. Animals receiving photobiomodulation treatment were divided into two groups: an early group starting photobiomodulation at 2 months of age (5XFAD+Early), and a late group starting photobiomodulation at 6 months of age (5XFAD+Delay). Both groups received photobiomodulation 20 minutes per session three times per week for 14 weeks. The Morris water maze, passive avoidance, and elevated plus maze tests were performed at 10 months of age. Immunohistochemistry and Western blot were performed after behavioral evaluation. The results showed that photobiomodulation treatment at early stages reduced amyloid accumulation, neuronal loss, and microgliosis and alleviated the cognitive dysfunction in 5XFAD mice, possibly by increasing insulin degrading enzyme related to amyloid-beta degradation. Photobiomodulation may be an excellent candidate for advanced preclinical Alzheimer's disease research.
Asunto(s)
Enfermedad de Alzheimer/radioterapia , Terapia por Luz de Baja Intensidad , Factores de Edad , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/psicología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Reacción de Prevención/efectos de la radiación , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Corteza Cerebral/efectos de la radiación , Cognición/efectos de la radiación , Modelos Animales de Enfermedad , Gliosis/patología , Gliosis/prevención & control , Humanos , Láseres de Semiconductores/uso terapéutico , Masculino , Aprendizaje por Laberinto/efectos de la radiación , Ratones , Ratones Transgénicos , Microglía/metabolismo , Microglía/patología , Microglía/efectos de la radiación , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Mutación Missense , Proteolisis/efectos de la radiaciónRESUMEN
The interaction between immune cells and phosphatidylserine (PS) molecules exposed on the surface of apoptotic-tumor bodies, such as those induced by chemotherapies, contributes to the formation of an immunosuppressive tumor microenvironment (TME). Annexin A5 (AnxA5) binds with high affinity to PS externalized by apoptotic cells, thereby hindering their interaction with immune cells. Here, we show that AnxA5 administration rescue the immunosuppressive state of the TME induced by chemotherapy. Due to the preferential homing of AnxA5 to the TME enriched with PS+ tumor cells, we demonstrate in vivo that fusing tumor-antigen peptide to AnxA5 significantly enhances its immunogenicity and antitumor efficacy when administered after chemotherapy. Also, the therapeutic antitumor effect of an AnxA5-peptide fusion can be further enhanced by administration of other immune checkpoint inhibitors. Our findings support the administration of AnxA5 following chemotherapy as a promising immune checkpoint inhibitor for cancer treatment.
Asunto(s)
Anexina A5/uso terapéutico , Vacunas contra el Cáncer/uso terapéutico , Factores Inmunológicos/uso terapéutico , Neoplasias/terapia , Animales , Anexina A5/genética , Anexina A5/metabolismo , Anticuerpos Bloqueadores/uso terapéutico , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/uso terapéutico , Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/metabolismo , Línea Celular Tumoral , Cisplatino/efectos adversos , Cisplatino/uso terapéutico , Modelos Animales de Enfermedad , Femenino , Humanos , Factores Inmunológicos/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Neoplasias/inmunología , Proteínas E7 de Papillomavirus/genética , Proteínas E7 de Papillomavirus/inmunología , Proteínas E7 de Papillomavirus/uso terapéutico , Fosfatidilserinas/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/inmunología , Proteínas Recombinantes de Fusión/uso terapéutico , Factor de Crecimiento Transformador beta/inmunología , Factor de Crecimiento Transformador beta/metabolismo , Microambiente Tumoral/efectos de los fármacos , Microambiente Tumoral/inmunología , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismoRESUMEN
Glioblastoma multiforme (GBM) is a lethal and highly vascular type of brain tumor. We previously reported that isolinderalactone enhances GBM apoptosis in vitro and in vivo, but its role in tumor angiogenesis is unknown. Here, we investigated the anti-angiogenic activity of isolinderalactone and its mechanisms. In a human GBM xenograft mouse model, isolinderalactone significantly reduced tumor growth and vessels. Isolinderalactone decreased the expression of vascular endothelial growth factor (VEGF) mRNA, protein, and VEGF secretion in hypoxic U-87 GBM cells and also in xenograft GMB tissue. In addition, we demonstrated that isolinderalactone significantly inhibited the proliferation, migration, and capillary-like tube formation of human brain microvascular endothelial cells (HBMECs) in the presence of VEGF. We also found that isolinderalactone decreased sprout diameter and length in a 3D microfluidic chip, and strongly reduced VEGF-triggered angiogenesis in vivo Matrigel plug assay. Isolinderalactone downregulated hypoxia-inducible factor-1α (HIF-1α) and HIF-2α proteins, decreased luciferase activity driven by the VEGF promoter in U-87 cells under hypoxic conditions, and suppressed VEGF-driven phosphorylation of VEGFR2 in HBMECs. Taken together, our results suggest that isolinderalactone is a promising candidate for GBM treatment through tumor angiogenesis inhibition.
Asunto(s)
Inhibidores de la Angiogénesis/administración & dosificación , Neoplasias Encefálicas/tratamiento farmacológico , Glioblastoma/tratamiento farmacológico , Sesquiterpenos/administración & dosificación , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Inhibidores de la Angiogénesis/farmacología , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Hipoxia de la Célula/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glioblastoma/genética , Glioblastoma/metabolismo , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Dispositivos Laboratorio en un Chip , Masculino , Ratones , Sesquiterpenos/farmacología , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de XenoinjertoRESUMEN
BACKGROUND: Mental and physical development during adolescence is a factor that may affect quality of life in adulthood. PURPOSE: The aims of this study were to investigate the developmental trajectories of body mass index (BMI), self-esteem, and adjustment among students from early to late adolescence and to examine the longitudinal relationships among these variables. METHODS: Data from 2006 to 2012 were collected from the Korean Welfare Panel Study. Of the initial sample of 521 students, 487 completed a validated questionnaire measuring BMI, self-esteem, and adjustment. Latent growth curve modeling analyses were conducted to examine the relationships among the variables. RESULTS: Univariate linear growth models showed a significant increase in BMI and significant declines in both self-esteem and adjustment across three time points from childhood to adolescence. The goodness of fit of the multivariate conditioned model supported the validity of the proposed longitudinal model (comparative fit index = .93, root mean square error of approximation = .08). Change in BMI was significantly linked with change in adjustment (ß = .18, p < .05) but not with change in self-esteem, whereas change in self-esteem exerted a statistically significant effect on change in adjustment (ß = .47, p < .001). CONCLUSIONS/IMPLICATIONS FOR PRACTICE: Our findings indicate that BMI and self-esteem are key determinants of student adjustment in school settings. Therefore, future health education interventions should focus on enhancing the positive physical and mental self-concepts of students, which should improve health and social behavior among students and subsequently afford a better quality of life for these students in adulthood.