Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Vaccines (Basel) ; 10(10)2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36298589

RESUMEN

We report the successful closure of Phase I clinical trials, comprising Phases Ia and Ib, of the vaccine candidate against human schistosomiasis: the Schistosoma mansoni 14 kDa fatty acid-binding protein (Sm14) + glucopyranosyl lipid A in squalene emulsion (GLA-SE). Shown here are the results of Phase Ib, an open, non-placebo-controlled, standardized-dose immunization trial involving 10 healthy 18-49-year-old women. Fifty micrograms of the Sm14 protein plus 10 µg GLA-SE per dose was given intramuscularly thrice at 30-day intervals. Participants were assessed clinically, biochemically, and immunologically for up to 120 days. In preambular experiments involving vaccinated pregnant female rabbits, we did not find any toxicological features in either the offspring or mothers, and the vaccine induced adaptive immunity in the animals. In women, no adverse events were observed, and vaccination induced high titers of anti-Sm14 serum IgG antibody production. Vaccination also elicited robust cytokine responses, with increased TNFα, IFNγ, and IL-2 profiles in all vaccinees on days 90 and 120. The completion of Phase I clinical trials, which were performed to the highest standards set by Good Clinical Research Practice (GCP) standards, and preclinical data in pregnant rabbits enabled the vaccine candidate to proceed to Phase II clinical trials in endemic areas.

2.
Vaccine ; 34(4): 586-594, 2016 Jan 20.
Artículo en Inglés | MEDLINE | ID: mdl-26571311

RESUMEN

DESIGN: Safety and immunogenicity of a recombinant 14kDa, fatty acid-binding protein(FABP) from Schistosoma mansoni (rSm14) were evaluated through an open, non-placebo-controlled, dose-standardized trial, performed at a single research site. The vaccine was formulated with glucopyranosyl lipid A (GLA) adjuvant in an oil-in-water emulsion (SE) and investigated in 20 male volunteers from a non-endemic area for schistosomiasis in the state of Rio de Janeiro, Brazil. Fifty microgram rSm14 with 10 µg GLA-SE (rSm14/GLA-SE)/dose were given intramuscularly three times with 30-day intervals. Participants were assessed clinically, biochemically and immunologically for up to 120 days. METHODS: Participants were screened for inclusion by physical examination, haematology and blood chemistry; then followed to assess adverse events and immunogenicity. Sera were tested for IgG (total and isotypes) and IgE. T cell induction of cytokines IL-2, IL-5, IL-10, IFNγ and TNFα was assessed by Milliplex kit and flow cytometry. RESULTS: The investigational product showed high tolerability; some self-limited, mild adverse events were observed during and after vaccine administration. Significant increases in Sm14-specific total IgG, IgG1 and IgG3 were observed 30 days after the first vaccination with specific IgG2 and IgG4 after 60 days. An increase in IgE antibodies was not observed at any time point. The IgG response was augmented after the second dose and 88% of all vaccinated subjects had developed high anti-Sm14 IgG titres 90 days after the first injection. From day 60 and onwards, there was an increase in CD4(+) T cells producing single cytokines, particularly TNFα and IL-2, with no significant increase of multi-functional TH1 cells. CONCLUSION: Clinical trial data on tolerability and specific immune responses after vaccination of adult, male volunteers in a non-endemic area for schistosomiasis with rSm14/GLA-SE, support this product as a safe, strongly immunogenic vaccine against schistosomiasis paving the way for follow-up Phase 2 trials. Study registration ID: NCT01154049 at http://www.clinicaltrials.gov.


Asunto(s)
Proteínas de Unión a Ácidos Grasos/inmunología , Proteínas del Helminto/inmunología , Schistosoma mansoni , Esquistosomiasis/prevención & control , Vacunas/uso terapéutico , Adyuvantes Inmunológicos/administración & dosificación , Adolescente , Adulto , Animales , Anticuerpos Antihelmínticos/sangre , Brasil , Citocinas/inmunología , Humanos , Inmunoglobulina G/sangre , Masculino , Persona de Mediana Edad , Linfocitos T/inmunología , Vacunas/efectos adversos , Vacunas/inmunología , Adulto Joven
3.
Genet Mol Res ; 3(1): 18-25, 2004 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-15100985

RESUMEN

Scientific research plays a fundamental role in the health and development of any society, since all technological advances depend ultimately on scientific discovery and the generation of wealth is intricately dependent on technological advance. Due to their importance, science and technology generally occupy important places in the hierarchical structure of developed societies, and they receive considerable public and private investment. Publicly funded science is almost entirely devoted to discovery, and it is administered and structured in a very similar way throughout the world. Particularly in the biological sciences, this structure, which is very much centered on the individual scientist and his own hypothesis-based investigations, may not be the best suited for either discovery in the context of complex biological systems, or for the efficient advancement of fundamental knowledge into practical utility. The adoption of other organizational paradigms, which permit a more coordinated and interactive research structure, may provide important opportunities to accelerate the scientific process and further enhance its relevance and contribution to society. The key alternative is a structure that incorporates larger organizational units to tackle larger and more complex problems. One example of such a unit is the research network. Brazil has utilized such networks to great effect in genome sequencing projects, demonstrating their relevance to the Brazilian research community and opening the possibility of their wider utility in the future.


Asunto(s)
Disciplinas de las Ciencias Biológicas , Genoma , Servicios de Información/organización & administración , Investigación/organización & administración , Brasil , Humanos
4.
Mem. Inst. Oswaldo Cruz ; 87(supl.5): 79-81, 1992.
Artículo en Inglés | LILACS | ID: lil-128424

RESUMEN

Infection with Schistosoma mansoni induces humoral and T cell mediated responses and leads to delayed hipersensitivity that results in granulomatous inflamatory disease around the parasite eggs. Regulation of these responses resulting in a reduction in this anti-egg inflamatory disease is appsrently determined by idiotypic repertoires of the patient, associated with genetic background and multiple external factors. We have previously reported on idiotype/anti-idiotype-receptor transactions in clinical human schistosomiasis. These findings support a hypothesis that anti-SEA cross-reactive idiotypes develop in some patients during the course of a chronic infection and participate in regulation of anti-SEA cellular immune responses. We repport here on experiments wich extend those observations to the regulation of granulomatous hypersensitivity measured by an in vitro granuloma model. T cells from chronic intestinal schistosomiasis patients were stimulated in vitro with anti-SEA idiotypes and assayed in an autologous in vitro granuloma assay for modulation of granuloma formation. These anti-SEA idiotype reactive T cells were capable of regulating autologous in vitro granuloma formation. This regulatory activity, initiated with stimulatory anti-SEA idiotypic antibodies, was antigenically specific and was dependent on the present of intact (F(ab')2 immunoglobulin molecules. The ability to elicit this regulatory activity appears to be dose dependent and is more easily demonstrated in chronically infected intestinal patients or SEA sensitized individuals. These data support the hypothesis that anti-SEA cross reactive idiotypes are important in regulating granulomatous hypersensitivy in chronic intestinal schistosomiasis patients and these cross-reactive idiotypes appear to play a major role in cell-cell interactions which result in the regulation of anti-SEA cellular immune responses


Asunto(s)
Granuloma/inmunología , Idiotipos de Inmunoglobulinas/inmunología , Schistosoma mansoni/inmunología
5.
Mem. Inst. Oswaldo Cruz ; 82(supl.4): 47-54, 1987. tab
Artículo en Inglés | LILACS | ID: lil-623664

RESUMEN

We have developed an in vitro model of granuloma formation for the purpose of studying the immunological components of delayed type hypersensitivity granuloma formation in patients infected with Schistosoma mansoni. Our data show that 1) granulomatous hypersensitivity can be studied by examining the cellular reactivity manifested as multiple cell layers surrounding the antigen conjugated beads; 2) this reactivity is a CD4 cell dependent, macrophage dependent, B cell independent response and 3) the in vitro granuloma response is antigenically specific for parasite egg antigens. Studies designed to investigate the immune regulation of granulomatous hypersensitivity using purified populations of either CD4 or CD8 T cells have demonstrated the complexity of cellular interactions in the suppression of granulomatous hypersensitivity. The anti-S. mansoni egg immune responses of individual patients with chronic intestinal schistosomiasis can be classified either as soluble egg antigen (SEA) hypersensitive with maximal granulomatous hypersensitivity or SEA suppressive with activation of the T cell suppressor pathway with effective SEA granuloma modulation. Our data suggest that T cell network interactions are active in the generation of effective granuloma modulation in chronic intestinal schistosomiasis patients.


Asunto(s)
Humanos , Óvulo/inmunología , Prostaglandinas E/farmacología , Schistosoma mansoni/inmunología , Complejo Antígeno-Anticuerpo/uso terapéutico , Leucocitos Mononucleares , Hipersensibilidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda