Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nature ; 634(8033): 374-380, 2024 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-39322673

RESUMEN

El Niño events, the warm phase of the El Niño-Southern Oscillation (ENSO) phenomenon, amplify climate variability throughout the world1. Uncertain climate model predictions limit our ability to assess whether these climatic events could become more extreme under anthropogenic greenhouse warming2. Palaeoclimate records provide estimates of past changes, but it is unclear if they can constrain mechanisms underlying future predictions3-5. Here we uncover a mechanism using numerical simulations that drives consistent changes in response to past and future forcings, allowing model validation against palaeoclimate data. The simulated mechanism is consistent with the dynamics of observed extreme El Niño events, which develop when western Pacific warm pool waters expand rapidly eastwards because of strongly coupled ocean currents and winds6,7. These coupled interactions weaken under glacial conditions because of a deeper mixed layer driven by a stronger Walker circulation. The resulting decrease in ENSO variability and extreme El Niño occurrence is supported by a series of tropical Pacific palaeoceanographic records showing reduced glacial temperature variability within key ENSO-sensitive oceanic regions, including new data from the central equatorial Pacific. The model-data agreement on past variability, together with the consistent mechanism across climatic states, supports the prediction of a shallower mixed layer and weaker Walker circulation driving more frequent extreme El Niño genesis under greenhouse warming.


Asunto(s)
Modelos Climáticos , El Niño Oscilación del Sur , Calentamiento Global , Cubierta de Hielo , Agua de Mar , Temperatura , El Niño Oscilación del Sur/efectos adversos , El Niño Oscilación del Sur/historia , Calentamiento Global/historia , Calentamiento Global/estadística & datos numéricos , Cubierta de Hielo/química , Océano Pacífico , Reproducibilidad de los Resultados , Agua de Mar/análisis , Agua de Mar/química , Movimientos del Agua , Viento , Historia Antigua
2.
Proc Natl Acad Sci U S A ; 116(35): 17201-17206, 2019 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-31405969

RESUMEN

Tropical rainfall variability is closely linked to meridional shifts of the Intertropical Convergence Zone (ITCZ) and zonal movements of the Walker circulation. The characteristics and mechanisms of tropical rainfall variations on centennial to decadal scales are, however, still unclear. Here, we reconstruct a replicated stalagmite-based 2,700-y-long, continuous record of rainfall for the deeply convective northern central Indo-Pacific (NCIP) region. Our record reveals decreasing rainfall in the NCIP over the past 2,700 y, similar to other records from the northern tropics. Notable centennial- to decadal-scale dry climate episodes occurred in both the NCIP and the southern central Indo-Pacific (SCIP) during the 20th century [Current Warm Period (CWP)] and the Medieval Warm Period (MWP), resembling enhanced El Niño-like conditions. Further, we developed a 2,000-y-long ITCZ shift index record that supports an overall southward ITCZ shift in the central Indo-Pacific and indicates southward mean ITCZ positions during the early MWP and the CWP. As a result, the drying trend since the 20th century in the northern tropics is similar to that observed during the past warm period, suggesting that a possible anthropogenic forcing of rainfall remains indistinguishable from natural variability.

3.
Nature ; 449(7161): 452-5, 2007 Sep 27.
Artículo en Inglés | MEDLINE | ID: mdl-17898765

RESUMEN

Models and palaeoclimate data suggest that the tropical Pacific climate system plays a key part in the mechanisms underlying orbital-scale and abrupt climate change. Atmospheric convection over the western tropical Pacific is a major source of heat and moisture to extratropical regions, and may therefore influence the global climate response to a variety of forcing factors. The response of tropical Pacific convection to changes in global climate boundary conditions, abrupt climate changes and radiative forcing remains uncertain, however. Here we present three absolutely dated oxygen isotope records from stalagmites in northern Borneo that reflect changes in west Pacific warm pool hydrology over the past 27,000 years. Our results suggest that convection over the western tropical Pacific weakened 18,000-20,000 years ago, as tropical Pacific and Antarctic temperatures began to rise during the early stages of deglaciation. Convective activity, as inferred from oxygen isotopes, reached a minimum during Heinrich event 1 (ref. 10), when the Atlantic meridional overturning circulation was weak, pointing to feedbacks between the strength of the overturning circulation and tropical Pacific hydrology. There is no evidence of the Younger Dryas event in the stalagmite records, however, suggesting that different mechanisms operated during these two abrupt deglacial climate events. During the Holocene epoch, convective activity appears to track changes in spring and autumn insolation, highlighting the sensitivity of tropical Pacific convection to external radiative forcing. Together, these findings demonstrate that the tropical Pacific hydrological cycle is sensitive to high-latitude climate processes in both hemispheres, as well as to external radiative forcing, and that it may have a central role in abrupt climate change events.

4.
Sci Adv ; 8(9): eabm4313, 2022 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-35245112

RESUMEN

Uncertainty surrounding the future response of El Niño-Southern Oscillation (ENSO) variability to anthropogenic warming necessitates the study of past ENSO sensitivity to substantial climate forcings over geological history. Here, we focus on the Holocene epoch and show that ENSO amplitude and frequency intensified over this period, driven by an increase in extreme El Niño events. Our study combines new climate model simulations, advances in coral proxy system modeling, and coral proxy data from the central tropical Pacific. Although the model diverges from the observed coral data regarding the exact magnitude of change, both indicate that modern ENSO variance eclipsed paleo-estimates over the Holocene, albeit against the backdrop of wide-ranging natural variability. Toward further constraining paleo-ENSO, our work underscores the need for multimodel investigations of additional Holocene intervals alongside more coral data from periods with larger climate forcing. Our findings implicate extreme El Niño events as an important rectifier of mean ENSO intensity.

5.
Nat Commun ; 9(1): 392, 2018 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-29374166

RESUMEN

Surface-ocean circulation in the northern Atlantic Ocean influences Northern Hemisphere climate. Century-scale circulation variability in the Atlantic Ocean, however, is poorly constrained due to insufficiently-resolved paleoceanographic records. Here we present a replicated reconstruction of sea-surface temperature and salinity from a site sensitive to North Atlantic circulation in the Gulf of Mexico which reveals pronounced centennial-scale variability over the late Holocene. We find significant correlations on these timescales between salinity changes in the Atlantic, a diagnostic parameter of circulation, and widespread precipitation anomalies using three approaches: multiproxy synthesis, observational datasets, and a transient simulation. Our results demonstrate links between centennial changes in northern Atlantic surface-circulation and hydroclimate changes in the adjacent continents over the late Holocene. Notably, our findings reveal that weakened surface-circulation in the Atlantic Ocean was concomitant with well-documented rainfall anomalies in the Western Hemisphere during the Little Ice Age.

6.
Sci Rep ; 3: 2633, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24037594

RESUMEN

Speleothem laminae have been postulated to form annually, and this lamina-chronology is widely applied to high-resolution modern and past climate reconstructions. However, this argument has not been directly supported by high resolution dating methods. Here we present contemporary single-lamina (230)Th dating techniques with 2σ precision as good as ±0.5 yr on a laminated stalagmite with density couplets from Xianren Cave, China, that covers the last 300 years. We find that the layers do not always deposit annually. Annual bands can be under- or over-counted by several years during different multi-decadal intervals. The irregular formation of missing and false bands in this example indicates that the assumption of annual speleothem laminae in a climate reconstruction should be approached carefully without a robust absolute-dated chronology.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda