Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Eur J Hum Genet ; 7(1): 2-11, 1999 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10094185

RESUMEN

Multicolour in situ hybridisation (MFISH) is increasingly applied to karyotyping and detection of chromosomal abnormalities. So far 27 colour analyses have been described using fluorescently labelled chromosome painting probes in a so-called combinatorial approach. In this paper a new strategy is presented to use efficiently the currently available number of spectrally separated fluorophores in order to increase the multiplicity of MFISH. We introduce the principle of COBRA (COmbined Binary RAtio labelling), which is based on the simultaneous use of combinatorial labelling and ratio labelling. Human chromosome painting in 24 colours is accomplished using four fluorophores only. Three fluorophores are used pair wise for ratio labelling of a set of 12 chromosome painting probes. The second set of 12 probes is labelled identically but is also given a binary label (fourth fluorophore). The COBRA method is demonstrated on normal human chromosomes and on a lymphoma (JVM) cell line, using probes enzymatically labelled with fluorescein, lissamine and cy5 as primary fluorophores, and diethylaminocoumarin (DEAC), a blue dye, as combinatorial fourth label to demonstrate incorporated digoxigenin. In addition, the principle was tested using chemical labelling. The first set of 12 painting probes was therefore labelled by ULS (Universal Linkage System), using DEAC, cy3 and cy5 as primary labels, and the second set was labelled similarly, but also contained a digoxigenin-ULS label, which was indirectly stained with fluorescein. Subsequently, a mathematical analysis is presented and methods are indicated for achieving an MFISH multiplicity of 48, 96 or even higher using existing technology.


Asunto(s)
Hibridación Fluorescente in Situ/métodos , Cromosomas Humanos , Humanos
2.
Am J Hum Genet ; 63(6): 1783-92, 1998 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-9837832

RESUMEN

This article explores the feasibility of the use of automated microscopy and image analysis to detect the presence of rare fetal nucleated red blood cells (NRBCs) circulating in maternal blood. The rationales for enrichment and for automated image analysis for "rare-event" detection are reviewed. We also describe the application of automated image analysis to 42 maternal blood samples, using a protocol consisting of one-step enrichment followed by immunocytochemical staining for fetal hemoglobin (HbF) and FISH for X- and Y-chromosomal sequences. Automated image analysis consisted of multimode microscopy and subsequent visual evaluation of image memories containing the selected objects. The FISH results were compared with the results of conventional karyotyping of the chorionic villi. By use of manual screening, 43% of the slides were found to be positive (>=1 NRBC), with a mean number of 11 NRBCs (range 1-40). By automated microscopy, 52% were positive, with on average 17 NRBCs (range 1-111). There was a good correlation between both manual and automated screening, but the NRBC yield from automated image analysis was found to be superior to that from manual screening (P=.0443), particularly when the NRBC count was >15. Seven (64%) of 11 XY fetuses were correctly diagnosed by FISH analysis of automatically detected cells, and all discrepancies were restricted to the lower cell-count range. We believe that automated microscopy and image analysis reduce the screening workload, are more sensitive than manual evaluation, and can be used to detect rare HbF-containing NRBCs in maternal blood.


Asunto(s)
Eritroblastos/citología , Sangre Fetal/citología , Procesamiento de Imagen Asistido por Computador/métodos , Microscopía/métodos , Embarazo/sangre , Automatización , Separación Celular , Femenino , Hemoglobina Fetal/análisis , Humanos , Inmunohistoquímica , Hibridación Fluorescente in Situ , Cariotipificación , Masculino , Microscopía Fluorescente , Sensibilidad y Especificidad , Cromosomas Sexuales , Coloración y Etiquetado
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda