Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Publication year range
1.
J Biol Chem ; 298(9): 102307, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35934051

RESUMEN

Apurinic/apyrimidinic (AP, or abasic) sites in DNA are one of the most common forms of DNA damage. AP sites are reactive and form cross-links to both proteins and DNA, are prone to strand breakage, and inhibit DNA replication and transcription. The replication-associated AP site repair protein HMCES protects cells from strand breaks, inhibits mutagenic translesion synthesis, and participates in repair of interstrand DNA cross-links derived from AP sites by forming a stable thiazolidine DNA-protein cross-link (DPC) to AP sites in single-stranded DNA (ssDNA). Despite the importance of HMCES to genome maintenance and the evolutionary conservation of its catalytic SRAP (SOS Response Associated Peptidase) domain, the enzymatic mechanisms of DPC formation and resolution are unknown. Using the bacterial homolog YedK, we show that the SRAP domain catalyzes conversion of the AP site to its reactive, ring-opened aldehyde form, and we provide structural evidence for the Schiff base intermediate that forms prior to the more stable thiazolidine. We also report two new activities, whereby SRAP reacts with polyunsaturated aldehydes at DNA 3'-ends generated by bifunctional DNA glycosylases and catalyzes direct reversal of the DPC to regenerate the AP site, the latter of which we observe in both YedK and HMCES-SRAP proteins. Taken together, this work provides insights into possible mechanisms by which HMCES DPCs are resolved in cells.


Asunto(s)
ADN Glicosilasas , ADN de Cadena Simple , Aldehídos , ADN/metabolismo , Daño del ADN , ADN Glicosilasas/metabolismo , Reparación del ADN , ADN-(Sitio Apurínico o Apirimidínico) Liasa/metabolismo , Péptido Hidrolasas/metabolismo , Proteínas/genética , Respuesta SOS en Genética , Bases de Schiff , Tiazolidinas
2.
bioRxiv ; 2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37398432

RESUMEN

Abasic sites are common DNA lesions that stall polymerases and threaten genome stability. When located in single-stranded DNA (ssDNA), they are shielded from aberrant processing by HMCES via a DNA-protein crosslink (DPC) that prevents double-strand breaks. Nevertheless, the HMCES-DPC must be removed to complete DNA repair. Here, we found that DNA polymerase α inhibition generates ssDNA abasic sites and HMCES-DPCs. These DPCs are resolved with a half-life of approximately 1.5 hours. Resolution does not require the proteasome or SPRTN protease. Instead, HMCES-DPC self-reversal is important for resolution. Biochemically, self-reversal is favored when the ssDNA is converted to duplex DNA. When the self-reversal mechanism is inactivated, HMCES-DPC removal is delayed, cell proliferation is slowed, and cells become hypersensitive to DNA damage agents that increase AP site formation. Thus, HMCES-DPC formation followed by self-reversal is an important mechanism for ssDNA AP site management.

3.
Cell Rep ; 42(11): 113427, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-37950866

RESUMEN

Abasic sites are common DNA lesions stalling polymerases and threatening genome stability. When located in single-stranded DNA (ssDNA), they are shielded from aberrant processing by 5-hydroxymethyl cytosine, embryonic stem cell (ESC)-specific (HMCES) via a DNA-protein crosslink (DPC) that prevents double-strand breaks. Nevertheless, HMCES-DPCs must be removed to complete DNA repair. Here, we find that DNA polymerase α inhibition generates ssDNA abasic sites and HMCES-DPCs. These DPCs are resolved with a half-life of approximately 1.5 h. HMCES can catalyze its own DPC self-reversal reaction, which is dependent on glutamate 127 and is favored when the ssDNA is converted to duplex DNA. When the self-reversal mechanism is inactivated in cells, HMCES-DPC removal is delayed, cell proliferation is slowed, and cells become hypersensitive to DNA damage agents that increase AP (apurinic/apyrimidinic) site formation. In these circumstances, proteolysis may become an important mechanism of HMCES-DPC resolution. Thus, HMCES-DPC formation followed by self-reversal is an important mechanism for ssDNA AP site management.


Asunto(s)
Daño del ADN , Proteínas , Proteínas/genética , Replicación del ADN , Reparación del ADN , ADN/genética , ADN de Cadena Simple
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda