Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 171
Filtrar
1.
EMBO J ; 41(18): e112162, 2022 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-35971916

RESUMEN

Autoinducer-2 is a key molecule for bacterial quorum sensing. New exporter structures may now help narrow the gap between biology and engineering.


Asunto(s)
Bacterias , Percepción de Quorum , Proteínas Bacterianas/química , Comunicación
2.
Molecules ; 29(3)2024 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-38338306

RESUMEN

Chitosan-based materials have broad applications, from biotechnology to pharmaceutics. Recent experiments showed that the degree and pattern of acetylation along the chitosan chain modulate its biological and physicochemical properties; however, the molecular mechanism remains unknown. Here, we report, to the best of our knowledge, the first de novo all-atom molecular dynamics (MD) simulations to investigate chitosan's self-assembly process at different degrees and patterns of acetylation. Simulations revealed that 10 mer chitosan chains with 50% acetylation in either block or alternating patterns associate to form ordered nanofibrils comprised of mainly antiparallel chains in agreement with the fiber diffraction data of deacetylated chitosan. Surprisingly, regardless of the acetylation pattern, the same intermolecular hydrogen bonds mediate fibril sheet formation while water-mediated interactions stabilize sheet-sheet stacking. Moreover, acetylated units are involved in forming strong intermolecular hydrogen bonds (NH-O6 and O6H-O7), which offers an explanation for the experimental observation that increased acetylation lowers chitosan's solubility. Taken together, the present study provides atomic-level understanding the role of acetylation plays in modulating chitosan's physiochemical properties, contributing to the rational design of chitosan-based materials with the ability to tune by its degree and pattern of acetylation. Additionally, we disseminate the improved molecular mechanics parameters that can be applied in MD studies to further understand chitosan-based materials.


Asunto(s)
Quitosano , Quitosano/química , Acetilación , Simulación de Dinámica Molecular
3.
Biotechnol Bioeng ; 120(5): 1366-1381, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36710487

RESUMEN

To probe signal propagation and genetic actuation in microbial consortia, we have coopted the components of both redox and quorum sensing (QS) signaling into a communication network for guiding composition by "programming" cell lysis. Here, we use an electrode to generate hydrogen peroxide as a redox cue that determines consortia composition. The oxidative stress regulon of Escherichia coli, OxyR, is employed to receive and transform this signal into a QS signal that coordinates the lysis of a subpopulation of cells. We examine a suite of information transfer modalities including "monoculture" and "transmitter-receiver" models, as well as a series of genetic circuits that introduce time-delays for altering information relay, thereby expanding design space. A simple mathematical model aids in developing communication schemes that accommodate the transient nature of redox signals and the "collective" attributes of QS signals. We suggest this platform methodology will be useful in understanding and controlling synthetic microbial consortia for a variety of applications, including biomanufacturing and biocontainment.


Asunto(s)
Consorcios Microbianos , Percepción de Quorum , Consorcios Microbianos/genética , Percepción de Quorum/genética , Escherichia coli/genética , Transducción de Señal/genética , Oxidación-Reducción
4.
Biomacromolecules ; 24(6): 2409-2432, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37155361

RESUMEN

Twenty years ago, this journal published a review entitled "Biofabrication with Chitosan" based on the observations that (i) chitosan could be electrodeposited using low voltage electrical inputs (typically less than 5 V) and (ii) the enzyme tyrosinase could be used to graft proteins (via accessible tyrosine residues) to chitosan. Here, we provide a progress report on the coupling of electronic inputs with advanced biological methods for the fabrication of biopolymer-based hydrogel films. In many cases, the initial observations of chitosan's electrodeposition have been extended and generalized: mechanisms have been established for the electrodeposition of various other biological polymers (proteins and polysaccharides), and electrodeposition has been shown to allow the precise control of the hydrogel's emergent microstructure. In addition, the use of biotechnological methods to confer function has been extended from tyrosinase conjugation to the use of protein engineering to create genetically fused assembly tags (short sequences of accessible amino acid residues) that facilitate the attachment of function-conferring proteins to electrodeposited films using alternative enzymes (e.g., transglutaminase), metal chelation, and electrochemically induced oxidative mechanisms. Over these 20 years, the contributions from numerous groups have also identified exciting opportunities. First, electrochemistry provides unique capabilities to impose chemical and electrical cues that can induce assembly while controlling the emergent microstructure. Second, it is clear that the detailed mechanisms of biopolymer self-assembly (i.e., chitosan gel formation) are far more complex than anticipated, and this provides a rich opportunity both for fundamental inquiry and for the creation of high performance and sustainable material systems. Third, the mild conditions used for electrodeposition allow cells to be co-deposited for the fabrication of living materials. Finally, the applications have been expanded from biosensing and lab-on-a-chip systems to bioelectronic and medical materials. We suggest that electro-biofabrication is poised to emerge as an enabling additive manufacturing method especially suited for life science applications and to bridge communication between our biological and technological worlds.


Asunto(s)
Quitosano , Quitosano/química , Monofenol Monooxigenasa/química , Hidrogeles , Proteínas , Biopolímeros
5.
Small ; 18(48): e2204837, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36207286

RESUMEN

Janus porous biomaterials are gaining increasing attention and there are considerable efforts to develop simple, rapid, and scalable methods capable of tuning micro- and macro-structures. Here, a single-step electro-fabrication method to create a Janus porous film by the electrodeposition of the amino-polysaccharide chitosan is reported. Specifically, a Janus structure emerges spontaneously when electrodeposition is performed at sub-ambient temperature (0-5 °C). Sub-ambient temperature electrodeposition experiments show that: a Janus microstructure emerges (potentially as the result of a subtle alteration of the intermolecular interactions responsible for self-assembly); important microstructural features (pore size, porosity, and thicknesses) can be tuned by conditions; and this method is readily scalable (vs serial printing) and can yield complex tubular structures with Janus faces. In vitro studies demonstrate anisotropic cell guidance, and in vivo studies using a rat calvarial defect model further confirm the beneficial features of such Janus porous film for guided bone regeneration. In summary, these results further demonstrate that electro-fabrication provides a simple and scalable platform technology for the controlled functional structures of soft matter for applications in regenerative medicine.


Asunto(s)
Materiales Biocompatibles , Galvanoplastia , Animales , Ratas , Porosidad , Temperatura , Medicina Regenerativa
6.
Biotechnol Bioeng ; 118(7): 2744-2758, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33851726

RESUMEN

Process conditions established during the development and manufacture of recombinant protein therapeutics dramatically impacts their quality and clinical efficacy. Technologies that enable rapid assessment of product quality are critically important. Here, we describe the development of sensor interfaces that directly connect to electronics and enable near real-time assessment of antibody titer and N-linked galactosylation. We make use of a spatially resolved electroassembled thiolated polyethylene glycol hydrogel that enables electroactivated disulfide linkages. For titer assessment, we constructed a cysteinylated protein G that can be linked to the thiolated hydrogel allowing for robust capture and assessment of antibody concentration. For detecting galactosylation, the hydrogel is linked with thiolated sugars and their corresponding lectins, which enables antibody capture based on glycan pattern. Importantly, we demonstrate linear assessment of total antibody concentration over an industrially relevant range and the selective capture and quantification of antibodies with terminal ß-galactose glycans. We also show that the interfaces can be reused after surface regeneration using a low pH buffer. Our functionalized interfaces offer advantages in their simplicity, rapid assembly, connectivity to electronics, and reusability. As they assemble directly onto electrodes that also serve as I/O registers, we envision incorporation into diagnostic platforms including those in manufacturing settings.


Asunto(s)
Anticuerpos Monoclonales/análisis , Proteínas Bacterianas/química , Hidrogeles/química , Polietilenglicoles/química , Animales , Glicosilación , Humanos , Proteínas Recombinantes/análisis
7.
Microb Cell Fact ; 20(1): 215, 2021 Nov 24.
Artículo en Inglés | MEDLINE | ID: mdl-34819093

RESUMEN

BACKGROUND: Microbial co-cultures and consortia are of interest in cell-based molecular production and even as "smart" therapeutics in that one can take advantage of division of labor and specialization to expand both the range of available functions and mechanisms for control. The development of tools that enable coordination and modulation of consortia will be crucial for future application of multi-population cultures. In particular, these systems would benefit from an expanded toolset that enables orthogonal inter-strain communication. RESULTS: We created a co-culture for the synthesis of a redox-active phenazine signaling molecule, pyocyanin (PYO), by dividing its synthesis into the generation of its intermediate, phenazine carboxylic acid (PCA) from the first strain, followed by consumption of PCA and generation of PYO in a second strain. Interestingly, both PCA and PYO can be used to actuate gene expression in cells engineered with the soxRS oxidative stress regulon, although importantly this signaling activity was found to depend on growth media. That is, like other signaling motifs in bacterial systems, the signaling activity is context dependent. We then used this co-culture's phenazine signals in a tri-culture to modulate gene expression and production of three model products: quorum sensing molecule autoinducer-1 and two fluorescent marker proteins, eGFP and DsRed. We also showed how these redox-based signals could be intermingled with other quorum-sensing (QS) signals which are more commonly used in synthetic biology, to control complex behaviors. To provide control over product synthesis in the tri-cultures, we also showed how a QS-induced growth control module could guide metabolic flux in one population and at the same time guide overall tri-culture function. Specifically, we showed that phenazine signal recognition, enabled through the oxidative stress response regulon soxRS, was dependent on media composition such that signal propagation within our parsed synthetic system could guide different desired outcomes based on the prevailing environment. In doing so, we expanded the range of signaling molecules available for coordination and the modes by which they can be utilized to influence overall function of a multi-population culture. CONCLUSIONS: Our results show that redox-based signaling can be intermingled with other quorum sensing signaling in ways that enable user-defined control of microbial consortia yielding various outcomes defined by culture medium. Further, we demonstrated the utility of our previously designed growth control module in influencing signal propagation and metabolic activity is unimpeded by orthogonal redox-based signaling. By exploring novel multi-modal strategies for guiding communication and consortia outcome, the concepts introduced here may prove to be useful for coordination of multiple populations within complex microbial systems.


Asunto(s)
Ingeniería Metabólica/métodos , Consorcios Microbianos/fisiología , Fenazinas/metabolismo , Piocianina/biosíntesis , Biología Sintética/métodos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Consorcios Microbianos/genética , Oxidación-Reducción , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Transducción de Señal
8.
Appl Environ Microbiol ; 86(5)2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31836580

RESUMEN

Melanin is a pigment produced by organisms throughout all domains of life. Due to its unique physicochemical properties, biocompatibility, and biostability, there has been an increasing interest in the use of melanin for broad applications. In the vast majority of studies, melanin has been either chemically synthesized or isolated from animals, which has restricted its use to small-scale applications. Using bacteria as biocatalysts is a promising and economical alternative for the large-scale production of biomaterials. In this study, we engineered the marine bacterium Vibrio natriegens, one of the fastest-growing organisms, to synthesize melanin by expressing a heterologous tyrosinase gene and demonstrated that melanin production was much faster than in previously reported heterologous systems. The melanin of V. natriegens was characterized as a polymer derived from dihydroxyindole-2-carboxylic acid (DHICA) and, similarly to synthetic melanin, exhibited several characteristic and useful features. Electron microscopy analysis demonstrated that melanin produced from V. natriegens formed nanoparticles that were assembled as "melanin ghost" structures, and the photoprotective properties of these particles were validated by their protection of cells from UV irradiation. Using a novel electrochemical reverse engineering method, we observed that melanization conferred redox activity to V. natriegens Moreover, melanized bacteria were able to quickly adsorb the organic compound trinitrotoluene (TNT). Overall, the genetic tractability, rapid division time, and ease of culture provide a set of attractive properties that compare favorably to current E. coli production strains and warrant the further development of this chassis as a microbial factory for natural product biosynthesis.IMPORTANCE Melanins are macromolecules that are ubiquitous in nature and impart a large variety of biological functions, including structure, coloration, radiation resistance, free radical scavenging, and thermoregulation. Currently, in the majority of investigations, melanins are either chemically synthesized or extracted from animals, which presents significant challenges for large-scale production. Bacteria have been used as biocatalysts to synthesize a variety of biomaterials due to their fast growth and amenability to genetic engineering using synthetic biology tools. In this study, we engineered the extremely fast-growing bacterium V. natriegens to synthesize melanin nanoparticles by expressing a heterologous tyrosinase gene with inducible promoters. Characterization of the melanin produced from V. natriegens-produced tyrosinase revealed that it exhibited physical and chemical properties similar to those of natural and chemically synthesized melanins, including nanoparticle structure, protection against UV damage, and adsorption of toxic compounds. We anticipate that producing and controlling melanin structures at the nanoscale in this bacterial system with synthetic biology tools will enable the design and rapid production of novel biomaterials for multiple applications.


Asunto(s)
Bacillus megaterium/genética , Biopolímeros/metabolismo , Melaninas/biosíntesis , Microorganismos Modificados Genéticamente/metabolismo , Monofenol Monooxigenasa/genética , Vibrio/metabolismo , Biopolímeros/genética , Microorganismos Modificados Genéticamente/genética , Monofenol Monooxigenasa/metabolismo , Vibrio/genética
9.
Biomacromolecules ; 20(2): 969-978, 2019 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-30616349

RESUMEN

Biomacromolecules often possess information to self-assemble through low energy competing interactions which can make self-assembly responsive to environmental cues and can also confer dynamic properties. Here, we coupled self-assembling systems to create biofunctional multilayer films that can be cued to disassemble through either molecular or electrical signals. To create functional multilayers, we: (i) electrodeposited the pH-responsive self-assembling aminopolysaccharide chitosan, (ii) allowed the lectin Concanavalin A (ConA) to bind to the chitosan-coated electrode (presumably through electrostatic interactions), (iii) performed layer-by-layer self-assembly by sequential contacting with glycogen and ConA, and (iv) conferred biological (i.e., enzymatic) function by assembling glycoprotein (i.e., enzymes) to the ConA-terminated multilayer. Because the ConA tetramer dissociates at low pH, this multilayer can be triggered to disassemble by acidification. We demonstrate two approaches to induce acidification: (i) glucose oxidase can induce multilayer disassembly in response to molecular cues, and (ii) anodic reactions can induce multilayer disassembly in response to electrical cues.


Asunto(s)
Sustancias Macromoleculares/química , Quitosano/química , Concanavalina A/química , Electricidad , Electrodos , Glucosa Oxidasa/química , Glucógeno/química , Glicoproteínas/química , Lectinas/química , Electricidad Estática
10.
Proc IEEE Inst Electr Electron Eng ; 107(7): 1402-1424, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32095023

RESUMEN

Biology is well-known for its ability to communicate through (i) molecularly-specific signaling modalities and (ii) a globally-acting electrical modality associated with ion flow across biological membranes. Emerging research suggests that biology uses a third type of communication modality associated with a flow of electrons through reduction/oxidation (redox) reactions. This redox signaling modality appears to act globally and has features of both molecular and electrical modalities: since free electrons do not exist in aqueous solution, the electrons must flow through molecular intermediates that can be switched between two states - with electrons (reduced) or without electrons (oxidized). Importantly, this global redox modality is easily accessible through its electrical features using convenient electrochemical instrumentation. In this review, we explain this redox modality, describe our electrochemical measurements, and provide four examples demonstrating that redox enables communication between biology and electronics. The first two examples illustrate how redox probing can acquire biologically relevant information. The last two examples illustrate how redox inputs can transduce biologically-relevant transitions for patterning and the induction of a synbio transceiver for two-hop molecular communication. In summary, we believe redox provides a unique ability to bridge bio-device communication because simple electrochemical methods enable global access to biologically meaningful information. Further, we envision that redox may facilitate the application of information theory to the biological sciences.

11.
Environ Microbiol ; 20(7): 2585-2597, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29806719

RESUMEN

Quorum sensing (QS) exists widely among bacteria, enabling a transition to multicellular behaviour after bacterial populations reach a particular density. The coordination of multicellularity enables biotechnological application, dissolution of biofilms, coordination of virulence, and so forth. Here, a method to elicit and subsequently disperse multicellular behaviour among QS-negative cells is developed using magnetic nanoparticle assembly. We fabricated magnetic nanoparticles (MNPs, ∼5 nm) that electrostatically collect wild-type (WT) Escherichia coli BL21 cells and brings them into proximity of bioengineered E. coli [CT104 (W3110 lsrFG- luxS- pCT6 + pET-DsRed)] reporter cells that exhibit a QS response after receiving autoinducer-2 (AI-2). By shortening the distance between WT and reporter cells (e.g., increasing local available AI-2 concentrations), the QS response signalling was amplified four-fold compared to that in native conditions without assembly. This study suggests potential applications in facilitating intercellular communication and modulating multicellular behaviours based on user-specified designs.


Asunto(s)
Escherichia coli , Magnetismo , Nanopartículas , Percepción de Quorum , Bacterias , Transducción de Señal
12.
Bioconjug Chem ; 29(6): 1809-1822, 2018 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-29745651

RESUMEN

Biology often provides the inspiration for functional soft matter, but biology can do more: it can provide the raw materials and mechanisms for hierarchical assembly. Biology uses polymers to perform various functions, and biologically derived polymers can serve as sustainable, self-assembling, and high-performance materials platforms for life-science applications. Biology employs enzymes for site-specific reactions that are used to both disassemble and assemble biopolymers both to and from component parts. By exploiting protein engineering methodologies, proteins can be modified to make them more susceptible to biology's native enzymatic activities. They can be engineered with fusion tags that provide (short sequences of amino acids at the C- and/or N- termini) that provide the accessible residues for the assembling enzymes to recognize and react with. This "biobased" fabrication not only allows biology's nanoscale components (i.e., proteins) to be engineered, but also provides the means to organize these components into the hierarchical structures that are prevalent in life.


Asunto(s)
Aminoácidos/química , Materiales Biocompatibles/química , Bioingeniería/métodos , Ingeniería de Proteínas/métodos , Proteínas/química , Aminoácidos/genética , Aminoácidos/metabolismo , Animales , Bacterias/química , Bacterias/genética , Bacterias/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Biocatálisis , Materiales Biocompatibles/metabolismo , Humanos , Modelos Moleculares , Monofenol Monooxigenasa/metabolismo , Proteínas/genética , Proteínas/metabolismo , Percepción de Quorum , Transglutaminasas/metabolismo
13.
Biotechnol Bioeng ; 115(2): 278-289, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-28782813

RESUMEN

Antibacterial resistance is an issue of increasing severity as current antibiotics are losing their effectiveness and fewer antibiotics are being developed. New methods for combating bacterial virulence are required. Modulating molecular communication among bacteria can alter phenotype, including attachment to epithelia, biofilm formation, and even toxin production. Intercepting and modulating communication networks provide a means to attenuate virulence without directly interacting with the bacteria of interest. In this work, we target communication mediated by the quorum sensing (QS) bacterial autoinducer-2, AI-2. We have assembled a capsule of biological polymers alginate and chitosan, attached an AI-2 processing kinase, LsrK, and provided substrate, ATP, for enzymatic alteration of AI-2 in culture fluids. Correspondingly, AI-2 mediated QS activity is diminished. All components of this system are "biofabricated"-they are biologically derived and their assembly is accomplished using biological means. Initially, component quantities and kinetics were tested as assembled in microtiter plates. Subsequently, the identical components and assembly means were used to create the "artificial cell" capsules. The functionalized capsules, when introduced into populations of bacteria, alter the dynamics of the AI-2 bacterial communication, attenuating QS activated phenotypes. We envision the assembly of these and other capsules or similar materials, as means to alter QS activity in a biologically compatible manner and in many environments, including in humans.


Asunto(s)
Células Artificiales/metabolismo , Biopolímeros/química , Proteínas de Escherichia coli/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Percepción de Quorum/genética , Proteínas Recombinantes/metabolismo , Alginatos/química , Células Artificiales/química , Quitosano/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Colorantes Fluorescentes/química , Colorantes Fluorescentes/metabolismo , Ácido Glucurónico/química , Ácidos Hexurónicos/química , Homoserina/análogos & derivados , Homoserina/química , Homoserina/metabolismo , Lactonas/química , Lactonas/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Plásmidos/genética , Proteínas Recombinantes/genética
14.
Biomacromolecules ; 19(8): 3502-3514, 2018 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-29928797

RESUMEN

Recent studies showed that melanin-mimetic catechol-chitosan films are redox-active and their ability to exchange electrons confers pro-oxidant activities for the sustained, in situ generation of reactive oxygen species for antimicrobial bandages. Here we electrofabricated catechol-chitosan films, demonstrate these films are redox-active, and show their ability to exchange electrons confers sustained radical scavenging activities that could be useful for protective coatings. Electrofabrication was performed in two steps: cathodic electrodeposition of a chitosan film followed by anodic grafting of catechol to chitosan. Spectroelectrochemical reverse engineering methods were used to characterize the catechol-chitosan films and demonstrate the films are redox-active and can donate electrons to quench oxidative free radicals and can accept electrons to quench reductive free radicals. Electrofabricated catechol-chitosan films that were peeled from the electrode were also shown to be capable of donating electrons to quench an oxidative free radical, but this radical scavenging activity decayed upon depletion of electrons from the film (i.e., as the film became oxidized). However, the radical scavenging activity could be recovered by a regeneration step in which the films were contacted with the biological reducing agent ascorbic acid. These results demonstrate that catecholic materials offer important redox-based and context-dependent properties for possible applications as protective coatings.


Asunto(s)
Materiales Biomiméticos/química , Catecoles/química , Quitosano/química , Depuradores de Radicales Libres/química
15.
Biomacromolecules ; 19(2): 364-373, 2018 02 12.
Artículo en Inglés | MEDLINE | ID: mdl-29244943

RESUMEN

The growing importance of hydrogels in translational medicine has stimulated the development of top-down fabrication methods, yet often these methods lack the capabilities to generate the complex matrix architectures observed in biology. Here we show that temporally varying electrical signals can cue a self-assembling polysaccharide to controllably form a hydrogel with complex internal patterns. Evidence from theory and experiment indicate that internal structure emerges through a subtle interplay between the electrical current that triggers self-assembly and the electrical potential (or electric field) that recruits and appears to orient the polysaccharide chains at the growing gel front. These studies demonstrate that short sequences (minutes) of low-power (∼1 V) electrical inputs can provide the program to guide self-assembly that yields hydrogels with stable, complex, and spatially varying structure and properties.


Asunto(s)
Electricidad , Hidrogeles/química , Polimerizacion , Quitosano/análogos & derivados
16.
Molecules ; 23(2)2018 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-29415497

RESUMEN

This work sets out to provide a self-assembled biopolymer capsule activated with a multi-functional enzyme for localized delivery. This enzyme, SsoPox, which is a lactonase and phosphotriesterase, provides a means of interrupting bacterial communication pathways that have been shown to mediate pathogenicity. Here we demonstrate the capability to express, purify and attach SsoPox to the natural biopolymer chitosan, preserving its activity to "neutralize" long-chain autoinducer-1 (AI-1) communication molecules. Attachment is shown via non-specific binding and by engineering tyrosine and glutamine affinity 'tags' at the C-terminus for covalent linkage. Subsequent degradation of AI-1, in this case N-(3-oxododecanoyl)-l-homoserine lactone (OdDHL), serves to "quench" bacterial quorum sensing (QS), silencing intraspecies communication. By attaching enzymes to pH-responsive chitosan that, in turn, can be assembled into various forms, we demonstrate device-based flexibility for enzyme delivery. Specifically, we have assembled quorum-quenching capsules consisting of an alginate inner core and an enzyme "decorated" chitosan shell that are shown to preclude bacterial QS crosstalk, minimizing QS mediated behaviors.


Asunto(s)
Arildialquilfosfatasa/química , Arildialquilfosfatasa/metabolismo , Bacterias/enzimología , Fenómenos Fisiológicos Bacterianos , Percepción de Quorum , Arildialquilfosfatasa/aislamiento & purificación , Quitosano/química , Quitosano/metabolismo , Activación Enzimática , Enzimas Inmovilizadas , Modelos Moleculares , Conformación Proteica
17.
Anal Chem ; 89(3): 1583-1592, 2017 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-28035805

RESUMEN

Oxidative stress is implicated in many diseases yet no simple, rapid, and robust measurement is available at the point-of-care to assist clinicians in detecting oxidative stress. Here, we report results from a discovery-based research approach in which a redox mediator is used to probe serum samples for chemical information relevant to oxidative stress. Specifically, we use an iridium salt (K2IrCl6) to probe serum for reducing activities that can transfer electrons to iridium and thus generate detectable optical and electrochemical signals. We show that this Ir-reducing assay can detect various biological reductants and is especially sensitive to glutathione (GSH) compared to alternative assays. We performed an initial clinical evaluation using serum from 10 people diagnosed with schizophrenia, a mental health disorder that is increasingly linked to oxidative stress. The measured Ir-reducing capacity was able to discriminate people with schizophrenia from healthy controls (p < 0.005), and correlations were observed between Ir-reducing capacity and independent measures of symptom severity.


Asunto(s)
Cloruros/química , Iridio/química , Estrés Oxidativo , Área Bajo la Curva , Técnicas Electroquímicas , Glutatión/química , Humanos , Oxidación-Reducción , Curva ROC , Esquizofrenia/diagnóstico , Esquizofrenia/metabolismo , Compuestos de Sulfhidrilo/sangre , Compuestos de Sulfhidrilo/química
18.
Biotechnol Bioeng ; 114(2): 407-415, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27543759

RESUMEN

Microbial cells have for many years been engineered to facilitate efficient production of biologics, chemicals, and other compounds. As the "metabolic" burden of synthetic genetic components can impair cell performance, microbial consortia are being developed to piece together specialized subpopulations that collectively produce desired products. Their use, however, has been limited by the inability to control their composition and function. One approach to leverage advantages of the division of labor within consortia is to link microbial subpopulations together through quorum sensing (QS) molecules. Previously, we directed the assembly of "quantized quorums," microbial subpopulations that are parsed through QS activation, by the exogenous addition of QS signal molecules to QS synthase mutants. In this work, we develop a more facile and general platform for creating "quantized quorums." Moreover, the methodology is not restricted to QS-mutant populations. We constructed quorum quenching capsules that partition QS-mediated phenotypes into discrete subpopulations. This compartmentalization guides QS subpopulations in a dose-dependent manner, parsing cell populations into activated or deactivated groups. The capsular "devices" consist of polyelectrolyte alginate-chitosan beads that encapsulate high-efficiency (HE) "controller cells" that, in turn, provide rapid uptake of the QS signal molecule AI-2 from culture fluids. In this methodology, instead of adding AI-2 to parse QS-mutants into subpopulations, we engineered cells to encapsulate them into compartments, and they serve to deplete AI-2 from wild-type populations. These encapsulated bacteria therefore, provide orthogonal control of population composition while allowing only minimal interaction with the product-producing cell population or consortia. We envision that compartmentalized control of QS should have applications in both metabolic engineering and human disease. Biotechnol. Bioeng. 2017;114: 407-415. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Bacterias , Ingeniería Metabólica/métodos , Consorcios Microbianos/fisiología , Modelos Biológicos , Percepción de Quorum/fisiología , Bacterias/citología , Bacterias/metabolismo , Fenotipo
19.
Biotechnol Bioeng ; 114(12): 2883-2895, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28755474

RESUMEN

Probiotics, whether taken as capsules or consumed in foods, have been regarded as safe for human use by regulatory agencies. Being living cells, they serve as "tunable" factories for the synthesis of a vast array of beneficial molecules. The idea of reprogramming probiotics to act as controllable factories, producing potential therapeutic molecules under user-specified conditions, represents a new and powerful concept in drug synthesis and delivery. Probiotics that serve as drug delivery vehicles pose several challenges, one being targeting (as seen with nanoparticle approaches). Here, we employ synthetic biology to control swimming directionality in a process referred to as "pseudotaxis." Escherichia coli, absent the motility regulator cheZ, swim sporadically, missing the traditional "run" in the run:tumble swimming paradigm. Upon introduction of cheZ in trans and its signal-generated upregulation, engineered bacteria can be "programmed" to swim toward the source of the chemical cue. Here, engineered cells that encounter sufficient levels of the small signal molecule pyocyanin, produce an engineered CheZ and swim with programmed directionality. By incorporating a degradation tag at the C-terminus of CheZ, the cells stop running when they exit spaces containing pyocyanin. That is, the engineered CheZ modified with a C-terminal extension derived from the putative DNA-binding transcriptional regulator YbaQ (RREERAAKKVA) is consumed by the ClpXP protease machine at a rate sufficient to "brake" the cells when pyocyanin levels are too low. Through this process, we demonstrate that over time, these engineered E. coli accumulate in pyocyanin-rich locales. We suggest that such approaches may find utility in engineering probiotics so that their beneficial functions can be focused in areas of principal benefit.


Asunto(s)
Quimiotaxis/fisiología , Proteínas de Escherichia coli/genética , Escherichia coli/fisiología , Redes Reguladoras de Genes/genética , Mejoramiento Genético/métodos , Proteínas Quimiotácticas Aceptoras de Metilo/genética , Transactivadores/genética , Quimiotaxis/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Piocianina/administración & dosificación , Biología Sintética/métodos
20.
Biotechnol Bioeng ; 114(1): 83-95, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-27478042

RESUMEN

Spider silk is an extraordinary material with physical properties comparable to the best scaffolding/structural materials, and as a fiber it can be manipulated with ease into a variety of configurations. Our work here demonstrates that natural spider silk fibers can also be used to organize biological components on and in devices through rapid and simple means. Micron scale spider silk fibers (5-10 µm in diameter) were surface modified with a variety of biological entities engineered with pentaglutamine tags via microbial transglutaminase (mTG). Enzymes, enzyme pathways, antibodies, and fluorescent proteins were all assembled onto spider silk fibers using this biomolecular engineering/biofabrication process. Additionally, arrangement of biofunctionalized fiber should in of itself generate a secondary level of biomolecular organization. Toward this end, as proofs of principle, spatially defined arrangement of biofunctionalized spider silk fiber was shown to generate effects specific to silk position in two cases. In one instance, arrangement perpendicular to a flow produced selective head and neck carcinoma cell capture on silk with antibodies complexed to conjugated protein G. In a second scenario, asymmetric bacterial chemotaxis arose from asymmetric conjugation of enzymes to arranged silk. Overall, the biofabrication processes used here were rapid, required no complex chemistries, were biologically benign, and also the resulting engineered silk microfibers were flexible, readily manipulated and functionally active. Deployed here in microfluidic environments, biofunctional spider silk fiber provides a means to convey complex biological functions over a range of scales, further extending its potential as a biomaterial in biotechnological settings. Biotechnol. Bioeng. 2017;114: 83-95. © 2016 Wiley Periodicals, Inc.


Asunto(s)
Proteínas Recombinantes de Fusión , Seda , Animales , Anticuerpos/química , Anticuerpos/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Biotecnología , Línea Celular Tumoral , Separación Celular/métodos , Femenino , Ingeniería Genética , Humanos , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Seda/química , Seda/genética , Seda/metabolismo , Arañas , Transglutaminasas/química , Transglutaminasas/genética , Transglutaminasas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda