Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nature ; 568(7751): 216-220, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30971839

RESUMEN

Phosphorene is a mono-elemental, two-dimensional (2D) substance with outstanding, highly directional properties and a bandgap that depends on the number of layers of the material1-8. Nanoribbons, meanwhile, combine the flexibility and unidirectional properties of one-dimensional nanomaterials, the high surface area of 2D nanomaterials and the electron-confinement and edge effects of both. The structures of nanoribbons can thus lead to exceptional control over electronic band structure, the emergence of novel phenomena and unique architectures for applications5,6,9-24. Phosphorene's intrinsically anisotropic structure has motivated numerous theoretical calculations of phosphorene nanoribbons (PNRs), predicting extraordinary properties5,6,12-24. So far, however, discrete PNRs have not been produced. Here we present a method for creating quantities of high-quality, individual PNRs by ionic scissoring of macroscopic black phosphorus crystals. This top-down process results in stable liquid dispersions of PNRs with typical widths of 4-50 nm, predominantly single-layer thickness, measured lengths of up to 75 µm and aspect ratios of up to 1,000. The nanoribbons are atomically flat single crystals, aligned exclusively in the zigzag crystallographic orientation. The ribbons have remarkably uniform widths along their entire lengths, and are extremely flexible. These properties-together with the ease of downstream manipulation via liquid-phase methods-should enable the search for predicted exotic states6,12-14,17-19,21, and an array of applications in which PNRs have been predicted to offer transformative advantages. These applications range from thermoelectric devices to high-capacity fast-charging batteries and integrated high-speed electronic circuits6,14-16,20,23,24.

2.
J Am Chem Soc ; 145(33): 18286-18295, 2023 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-37551934

RESUMEN

Quasi-1D nanoribbons provide a unique route to diversifying the properties of their parent 2D nanomaterial, introducing lateral quantum confinement and an abundance of edge sites. Here, a new family of nanomaterials is opened with the creation of arsenic-phosphorus alloy nanoribbons (AsPNRs). By ionically etching the layered crystal black arsenic-phosphorus using lithium electride followed by dissolution in amidic solvents, solutions of AsPNRs are formed. The ribbons are typically few-layered, several micrometers long with widths tens of nanometers across, and both highly flexible and crystalline. The AsPNRs are highly electrically conducting above 130 K due to their small band gap (ca. 0.035 eV), paramagnetic in nature, and have high hole mobilities, as measured with the first generation of AsP devices, directly highlighting their properties and utility in electronic devices such as near-infrared detectors, quantum computing, and charge carrier layers in solar cells.

3.
Faraday Discuss ; 210(0): 409-428, 2018 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-29974088

RESUMEN

Atomic force microscopes (AFMs) are capable of high-resolution mapping of structures and the measurement of mechanical properties on nanometre scales within gaseous, liquid and vacuum environments. The contact mode high-speed AFM (HS-AFM) developed at Bristol Nano Dynamics Ltd. operates at speeds that are orders of magnitude faster than conventional AFMs, and is capable of capturing multiple frames per second. This allows for direct observation of dynamic events in real-time, with nanometre lateral resolution and subatomic height resolution. HS-AFM is a valuable tool for the imaging of nanoscale corrosion initiation events, such as metastable pitting, grain boundary (GB) dissolution and short crack formation during stress corrosion cracking (SCC). Within this study HS-AFM was combined with SEM and FIB milling to produce a multifaceted picture of localised corrosion events occurring on thermally sensitised AISI 304 stainless steel in an aqueous solution of 1% sodium chloride (NaCl). HS-AFM measurements were performed in situ by imaging within a custom built liquid cell with parallel electrochemical control. The high resolution of the HS-AFM allowed for measurements to be performed at individual reaction sites, i.e. at specific GB carbide surfaces. Topographic maps of the sample surface allowed for accurate measurements of the dimensions of pits formed. Using these measurements it was possible to calculate, and subsequently model, the volumes of metal reacting with respect to time, and so the current densities and ionic fluxes at work. In this manner, the local electrochemistry at nanoscale reaction sites may be reconstructed.

4.
Nano Lett ; 17(10): 5891-5896, 2017 10 11.
Artículo en Inglés | MEDLINE | ID: mdl-28678518

RESUMEN

A primary method for the production of 2D nanosheets is liquid-phase delamination from their 3D layered bulk analogues. Most strategies currently achieve this objective by significant mechanical energy input or chemical modification but these processes are detrimental to the structure and properties of the resulting 2D nanomaterials. Bulk poly(triazine imide) (PTI)-based carbon nitrides are layered materials with a high degree of crystalline order. Here, we demonstrate that these semiconductors are spontaneously soluble in select polar aprotic solvents, that is, without any chemical or physical intervention. In contrast to more aggressive exfoliation strategies, this thermodynamically driven dissolution process perfectly maintains the crystallographic form of the starting material, yielding solutions of defect-free, hexagonal 2D nanosheets with a well-defined size distribution. This pristine nanosheet structure results in narrow, excitation-wavelength-independent photoluminescence emission spectra. Furthermore, by controlling the aggregation state of the nanosheets, we demonstrate that the emission wavelengths can be tuned from narrow UV to broad-band white. This has potential applicability to a range of optoelectronic devices.

5.
J Radiol Prot ; 38(1): 329-342, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29350190

RESUMEN

The distribution, quantification and exposure-related effects of radiation in the environment, arising from both natural and anthropogenic sources, is of great (and growing) concern for global populations. Recent events at the Fukushima Daiichi Nuclear Plant (FDNPP) have further highlighted the importance of developing radiation mapping technologies that not only contribute to the continued assessment of contamination, but can serve as an educational tool for members of the public regarding both its behaviour and extent. With an even greater number of people possessing smart-phone technology, a lightweight and portable 'connected system' has been developed to demonstrate to users the calibrated radioactive dose rate in an area, viewable in real-time through a dedicated phone application. As well as allowing for system users to be alerted where variations in dose rate are experienced, the combined results from multiple systems are viewable through a custom-built desktop application-permitting the output obtained via any number of units to be similarly displayed in real-time. A successful initial trialling of the system is described at a former tin mine in Cornwall (south-west England)-known to exhibit low, but identifiable radiation anomalies in discrete areas. Additional applications outside of its educational usage are also discussed.


Asunto(s)
Monitoreo de Radiación/métodos , Concienciación , Humanos , Exposición a la Radiación/efectos adversos
6.
Ultramicroscopy ; 222: 113210, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33529869

RESUMEN

The contact mode high-speed atomic force microscope (AFM) operates orders of magnitude faster than conventional AFMs. It is capable of capturing multiple frames per second with nanometre-scale lateral resolution and subatomic height resolution. This advancement in imaging rate allows for microscale analysis across macroscale surfaces, making it suitable for applications across materials science. However, the quality of the surface analysis obtained by high-speed AFM is highly dependent upon the standard of sample preparation and the resultant final surface finish. In this study, different surface preparation techniques that are commonly implemented within metallurgical studies are compared for samples of SAF 2205 duplex stainless steel. It was found that, while acid etching and electrolytic etching were optimal for the low resolution of optical microscopy, these methods were less suited for analysis by high resolution high-speed AFM. Mechanical and colloidal silica polishing was found to be the optimal method explored, as it provided a gentle etch of the surface allowing for high quality topographic maps of the sample surface.

7.
Nat Chem ; 9(3): 244-249, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-28221358

RESUMEN

Strategies for forming liquid dispersions of nanomaterials typically focus on retarding reaggregation, for example via surface modification, as opposed to promoting the thermodynamically driven dissolution common for molecule-sized species. Here we demonstrate the true dissolution of a wide range of important 2D nanomaterials by forming layered material salts that spontaneously dissolve in polar solvents yielding ionic solutions. The benign dissolution advantageously maintains the morphology of the starting material, is stable against reaggregation and can achieve solutions containing exclusively individualized monolayers. Importantly, the charge on the anionic nanosheet solutes is reversible, enables targeted deposition over large areas via electroplating and can initiate novel self-assembly upon drying. Our findings thus reveal a unique solution-like behaviour for 2D materials that enables their scalable production and controlled manipulation.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda