Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
EMBO Rep ; 25(8): 3707-3737, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39085642

RESUMEN

The key DNA repair enzyme DNA-PKcs has several and important cellular functions. Loss of DNA-PKcs activity in mice has revealed essential roles in immune and nervous systems. In humans, DNA-PKcs is a critical factor for brain development and function since mutation of the prkdc gene causes severe neurological deficits such as microcephaly and seizures, predicting yet unknown roles of DNA-PKcs in neurons. Here we show that DNA-PKcs modulates synaptic plasticity. We demonstrate that DNA-PKcs localizes at synapses and phosphorylates PSD-95 at newly identified residues controlling PSD-95 protein stability. DNA-PKcs -/- mice are characterized by impaired Long-Term Potentiation (LTP), changes in neuronal morphology, and reduced levels of postsynaptic proteins. A PSD-95 mutant that is constitutively phosphorylated rescues LTP impairment when over-expressed in DNA-PKcs -/- mice. Our study identifies an emergent physiological function of DNA-PKcs in regulating neuronal plasticity, beyond genome stability.


Asunto(s)
Proteína Quinasa Activada por ADN , Homólogo 4 de la Proteína Discs Large , Potenciación a Largo Plazo , Plasticidad Neuronal , Estabilidad Proteica , Animales , Fosforilación , Proteína Quinasa Activada por ADN/metabolismo , Proteína Quinasa Activada por ADN/genética , Ratones , Homólogo 4 de la Proteína Discs Large/metabolismo , Homólogo 4 de la Proteína Discs Large/genética , Neuronas/metabolismo , Ratones Noqueados , Humanos , Sinapsis/metabolismo , Reparación del ADN , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Proteínas de Unión al ADN
2.
Int J Mol Sci ; 24(9)2023 May 05.
Artículo en Inglés | MEDLINE | ID: mdl-37175984

RESUMEN

Protons are now increasingly used to treat pediatric medulloblastoma (MB) patients. We designed and characterized a setup to deliver proton beams for in vivo radiobiology experiments at a TOP-IMPLART facility, a prototype of a proton-therapy linear accelerator developed at the ENEA Frascati Research Center, with the goal of assessing the feasibility of TOP-IMPLART for small animal proton therapy research. Mice bearing Sonic-Hedgehog (Shh)-dependent MB in the flank were irradiated with protons to test whether irradiation could be restricted to a specific depth in the tumor tissue and to compare apoptosis induced by the same dose of protons or photons. In addition, the brains of neonatal mice at postnatal day 5 (P5), representing a very small target, were irradiated with 6 Gy of protons with two different collimated Spread-Out Bragg Peaks (SOBPs). Apoptosis was visualized by immunohistochemistry for the apoptotic marker caspase-3-activated, and quantified by Western blot. Our findings proved that protons could be delivered to the upper part while sparing the deepest part of MB. In addition, a comparison of the effectiveness of protons and photons revealed a very similar increase in the expression of cleaved caspase-3. Finally, by using a very small target, the brain of P5-neonatal mice, we demonstrated that the proton irradiation field reached the desired depth in brain tissue. Using the TOP-IMPLART accelerator we established setup and procedures for proton irradiation, suitable for translational preclinical studies. This is the first example of in vivo experiments performed with a "full-linac" proton-therapy accelerator.


Asunto(s)
Neoplasias Cerebelosas , Meduloblastoma , Ratones , Animales , Protones , Meduloblastoma/radioterapia , Caspasa 3 , Neoplasias Cerebelosas/radioterapia , Radiobiología
3.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38068942

RESUMEN

Nanoparticles are being increasingly studied to enhance radiation effects. Among them, nanodiamonds (NDs) are taken into great consideration due to their low toxicity, inertness, chemical stability, and the possibility of surface functionalization. The objective of this study is to explore the influence of the chemical/physical properties of NDs on cellular radiosensitivity to combined treatments with radiation beams of different energies. DAOY, a human radioresistant medulloblastoma cell line was treated with NDs-differing for surface modifications [hydrogenated (H-NDs) and oxidized (OX-NDs)], size, and concentration-and analysed for (i) ND internalization and intracellular localization, (ii) clonogenic survival after combined treatment with different radiation beam energies and (iii) DNA damage and apoptosis, to explore the nature of ND-radiation biological interactions. Results show that chemical/physical characteristics of NDs are crucial in determining cell toxicity, with hydrogenated NDs (H-NDs) decreasing either cellular viability when administered alone, or cell survival when combined with radiation, depending on ND size and concentration, while OX-NDs do not. Also, irradiation at high energy (γ-rays at 1.25 MeV), in combination with H-NDs, is more efficient in eliciting radiosensitisation when compared to irradiation at lower energy (X-rays at 250 kVp). Finally, the molecular mechanisms of ND radiosensitisation was addressed, demonstrating that cell killing is mediated by the induction of Caspase-3-dependent apoptosis that is independent to DNA damage. Identifying the optimal combination of ND characteristics and radiation energy has the potential to offer a promising therapeutic strategy for tackling radioresistant cancers using H-NDs in conjunction with high-energy radiation.


Asunto(s)
Nanodiamantes , Neoplasias , Humanos , Nanodiamantes/química , Tolerancia a Radiación , Supervivencia Celular , Neoplasias/radioterapia
4.
Int J Mol Sci ; 24(10)2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37240150

RESUMEN

Pelvic radiation disease (PRD), a frequent side effect in patients with abdominal/pelvic cancers treated with radiotherapy, remains an unmet medical need. Currently available preclinical models have limited applications for the investigation of PRD pathogenesis and possible therapeutic strategies. In order to select the most effective irradiation protocol for PRD induction in mice, we evaluated the efficacy of three different locally and fractionated X-ray exposures. Using the selected protocol (10 Gy/day × 4 days), we assessed PRD through tissue (number and length of colon crypts) and molecular (expression of genes involved in oxidative stress, cell damage, inflammation, and stem cell markers) analyses at short (3 h or 3 days after X-ray) and long (38 days after X-rays) post-irradiation times. The results show that a primary damage response in term of apoptosis, inflammation, and surrogate markers of oxidative stress was found, thus determining a consequent impairment of cell crypts differentiation and proliferation as well as a local inflammation and a bacterial translocation to mesenteric lymph nodes after several weeks post-irradiation. Changes were also found in microbiota composition, particularly in the relative abundance of dominant phyla, related families, and in alpha diversity indices, as an indication of dysbiotic conditions induced by irradiation. Fecal markers of intestinal inflammation, measured during the experimental timeline, identified lactoferrin, along with elastase, as useful non-invasive tools to monitor disease progression. Thus, our preclinical model may be useful to develop new therapeutic strategies for PRD treatment.


Asunto(s)
Traumatismos por Radiación , Ratones , Animales , Rayos X , Modelos Animales de Enfermedad , Apoptosis/efectos de la radiación , Inflamación
5.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36232813

RESUMEN

Chronic inflammatory bowel disorders (IBD) are idiopathic diseases associated with altered intestinal permeability, which in turn causes an exaggerated immune response to enteric antigens in a genetically susceptible host. A rise in psych cognitive disorders, such as anxiety and depression, has been observed in IBD patients. We here report investigations on a model of chemically induced experimental colitis by oral administration of sodium dextran sulfate (DSS) in C57BL/6 mice. We investigate, in vivo, the crosstalk between the intestine and the brain, evaluating the consequences of intestinal inflammation on neuroinflammation and hippocampal adult neurogenesis. By using different DSS administration strategies, we are able to induce acute or chronic colitis, simulating clinical characteristics observed in IBD patients. Body weight loss, colon shortening, alterations of the intestinal mucosa and fecal metabolic changes in amino acids-, lipid- and thiamine-related pathways are observed in colitis. The activation of inflammatory processes in the colon is confirmed by macrophage infiltration and increased expression of the proinflammatory cytokine and oxidative stress marker (Il-6 and iNOS). Interestingly, in the hippocampus of acutely DSS-treated mice, we report the upregulation of inflammatory-related genes (Il-6, Il-1ß, S-100, Tgf-ß and Smad-3), together with microgliosis. Chronic DSS treatment also resulted in neuroinflammation in the hippocampus, indicated by astrocyte activation. Evaluation of stage-specific neurogenesis markers reveals deficits in the dentate gyrus after acute and chronic DSS treatments, indicative of defective adult hippocampal neurogenesis. Finally, based on a possible causal relationship between gut-related inflammation and brain cancer, we investigate the impact of DSS-induced colitis on oncogenesis, using the Ptch1+/-/C57BL/6 mice, a well-established medulloblastoma (MB) mouse model, finding no differences in MB development between untreated and DSS-treated mice. In conclusion, in our experimental model, the intestinal inflammation associated with acute and chronic colitis markedly influences brain homeostasis, impairing hippocampal neurogenesis but not MB oncogenesis.


Asunto(s)
Neoplasias Encefálicas , Colitis , Enfermedades Inflamatorias del Intestino , Aminoácidos , Animales , Eje Cerebro-Intestino , Carcinogénesis , Colitis/patología , Colon/patología , Citocinas/metabolismo , Sulfato de Dextran/toxicidad , Modelos Animales de Enfermedad , Hipocampo/metabolismo , Inflamación , Interleucina-6/metabolismo , Lípidos/efectos adversos , Ratones , Ratones Endogámicos C57BL , Neurogénesis , Sulfatos , Tiamina , Factor de Crecimiento Transformador beta/metabolismo
6.
Int J Mol Sci ; 23(4)2022 Feb 16.
Artículo en Inglés | MEDLINE | ID: mdl-35216284

RESUMEN

Cell communication via exosomes is capable of influencing cell fate in stress situations such as exposure to ionizing radiation. In vitro and in vivo studies have shown that exosomes might play a role in out-of-target radiation effects by carrying molecular signaling mediators of radiation damage, as well as opposite protective functions resulting in resistance to radiotherapy. However, a global understanding of exosomes and their radiation-induced regulation, especially within the context of an intact mammalian organism, has been lacking. In this in vivo study, we demonstrate that, compared to sham-irradiated (SI) mice, a distinct pattern of proteins and miRNAs is found packaged into circulating plasma exosomes after whole-body and partial-body irradiation (WBI and PBI) with 2 Gy X-rays. A high number of deregulated proteins (59% of WBI and 67% of PBI) was found in the exosomes of irradiated mice. In total, 57 and 13 miRNAs were deregulated in WBI and PBI groups, respectively, suggesting that the miRNA cargo is influenced by the tissue volume exposed to radiation. In addition, five miRNAs (miR-99b-3p, miR-200a-3p, miR-200a, miR-182-5p, miR-182) were commonly overexpressed in the exosomes from the WBI and PBI groups. In this study, particular emphasis was also given to the determination of the in vivo effect of exosome transfer by intracranial injection in the highly radiosensitive neonatal cerebellum at postnatal day 3. In accordance with a major overall anti-apoptotic function of the commonly deregulated miRNAs, here, we report that exosomes from the plasma of irradiated mice, especially in the case of WBI, prevent radiation-induced apoptosis, thus holding promise for exosome-based future therapeutic applications against radiation injury.


Asunto(s)
Exosomas , MicroARNs , Traumatismos por Radiación , Animales , Apoptosis , Cerebelo/metabolismo , Exosomas/metabolismo , Mamíferos/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Proteómica , Traumatismos por Radiación/metabolismo
7.
Int J Mol Sci ; 22(22)2021 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-34830484

RESUMEN

Radiation therapy represents one of the primary treatment modalities for primary and metastatic brain tumors. Although recent advances in radiation techniques, that allow the delivery of higher radiation doses to the target volume, reduce the toxicity to normal tissues, long-term neurocognitive decline is still a detrimental factor significantly affecting quality of life, particularly in pediatric patients. This imposes the need for the development of prevention strategies. Based on recent evidence, showing that manipulation of the Shh pathway carries therapeutic potential for brain repair and functional recovery after injury, here we evaluate how radiation-induced hippocampal alterations are modulated by the constitutive activation of the Shh signaling pathway in Patched 1 heterozygous mice (Ptch1+/-). Our results show, for the first time, an overall protective effect of constitutive Shh pathway activation on hippocampal radiation injury. This activation, through modulation of the proneural gene network, leads to a long-term reduction of hippocampal deficits in the stem cell and new neuron compartments and to the mitigation of radio-induced astrogliosis, despite some behavioral alterations still being detected in Ptch1+/- mice. A better understanding of the pathogenic mechanisms responsible for the neural decline following irradiation is essential for identifying prevention measures to contain the harmful consequences of irradiation. Our data have important translational implications as they suggest a role for Shh pathway manipulation to provide the therapeutic possibility of improving brain repair and functional recovery after radio-induced injury.


Asunto(s)
Proteínas Hedgehog/genética , Hipocampo/efectos de la radiación , Neurogénesis/genética , Receptor Patched-1/genética , Animales , Astrocitos/metabolismo , Astrocitos/patología , Redes Reguladoras de Genes/efectos de la radiación , Hipocampo/metabolismo , Hipocampo/patología , Humanos , Ratones , Ratones Noqueados , Neurogénesis/efectos de la radiación , Neuronas/metabolismo , Neuronas/efectos de la radiación , Calidad de Vida , Radiación Ionizante , Transducción de Señal/efectos de la radiación
8.
Int J Mol Sci ; 22(19)2021 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-34638864

RESUMEN

Medulloblastoma (MB) is a primary central nervous system tumor affecting mainly young children. New strategies of drug delivery are urgent to treat MB and, in particular, the SHH-dependent subtype-the most common in infants-in whom radiotherapy is precluded due to the severe neurological side effects. Plant virus nanoparticles (NPs) represent an innovative solution for this challenge. Tomato bushy stunt virus (TBSV) was functionally characterized as a carrier for drug targeted delivery to a murine model of Shh-MB. The TBSV NPs surface was genetically engineered with peptides for brain cancer cell targeting, and the modified particles were produced on a large scale using Nicotiana benthamiana plants. Tests on primary cultures of Shh-MB cells allowed us to define the most efficient peptides able to induce specific uptake of TBSV. Immunofluorescence and molecular dynamics simulations supported the hypothesis that the specific targeting of the NPs was mediated by the interaction of the peptides with their natural partners and reinforced by the presentation in association with the virus. In vitro experiments demonstrated that the delivery of Doxorubicin through the chimeric TBSV allowed reducing the dose of the chemotherapeutic agent necessary to induce a significant decrease in tumor cells viability. Moreover, the systemic administration of TBSV NPs in MB symptomatic mice, independently of sex, confirmed the ability of the virus to reach the tumor in a specific manner. A significant advantage in the recognition of the target appeared when TBSV NPs were functionalized with the CooP peptide. Overall, these results open new perspectives for the use of TBSV as a vehicle for the targeted delivery of chemotherapeutics to MB in order to reduce early and late toxicity.


Asunto(s)
Neoplasias Cerebelosas , Doxorrubicina , Sistemas de Liberación de Medicamentos , Proteínas Hedgehog/metabolismo , Meduloblastoma , Nanopartículas , Proteínas de Neoplasias/metabolismo , Tombusvirus/química , Animales , Neoplasias Cerebelosas/tratamiento farmacológico , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Doxorrubicina/química , Doxorrubicina/farmacología , Proteínas Hedgehog/genética , Meduloblastoma/tratamiento farmacológico , Meduloblastoma/genética , Meduloblastoma/metabolismo , Meduloblastoma/patología , Ratones , Ratones Mutantes , Nanopartículas/química , Nanopartículas/uso terapéutico , Proteínas de Neoplasias/genética , Nicotiana/virología
9.
Int J Mol Sci ; 22(8)2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33924260

RESUMEN

The brain undergoes ionizing radiation exposure in many clinical situations, particularly during radiotherapy for brain tumors. The critical role of the hippocampus in the pathogenesis of radiation-induced neurocognitive dysfunction is well recognized. The goal of this study is to test the potential contribution of non-targeted effects in the detrimental response of the hippocampus to irradiation and to elucidate the mechanisms involved. C57Bl/6 mice were whole body (WBI) or partial body (PBI) irradiated with 0.1 or 2.0 Gy of X-rays or sham irradiated. PBI consisted of the exposure of the lower third of the mouse body, whilst the upper two thirds were shielded. Hippocampi were collected 15 days or 6 months post-irradiation and a multi-omics approach was adopted to assess the molecular changes in non-coding RNAs, proteins and metabolic levels, as well as histological changes in the rate of hippocampal neurogenesis. Notably, at 2.0 Gy the pattern of early molecular and histopathological changes induced in the hippocampus at 15 days following PBI were similar in quality and quantity to the effects induced by WBI, thus providing a proof of principle of the existence of out-of-target radiation response in the hippocampus of conventional mice. We detected major alterations in DAG/IP3 and TGF-ß signaling pathways as well as in the expression of proteins involved in the regulation of long-term neuronal synaptic plasticity and synapse organization, coupled with defects in neural stem cells self-renewal in the hippocampal dentate gyrus. However, compared to the persistence of the WBI effects, most of the PBI effects were only transient and tended to decrease at 6 months post-irradiation, indicating important mechanistic difference. On the contrary, at low dose we identified a progressive accumulation of molecular defects that tended to manifest at later post-irradiation times. These data, indicating that both targeted and non-targeted radiation effects might contribute to the pathogenesis of hippocampal radiation-damage, have general implications for human health.


Asunto(s)
Irradiación Craneana , Hipocampo/metabolismo , Hipocampo/efectos de la radiación , Metaboloma , Neurogénesis/genética , Neurogénesis/efectos de la radiación , Proteoma , Transcriptoma , Animales , Biología Computacional/métodos , Irradiación Craneana/efectos adversos , Femenino , Regulación de la Expresión Génica , Inmunohistoquímica , Ratones , Dosis de Radiación , Transducción de Señal
10.
Int J Mol Sci ; 21(21)2020 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-33182277

RESUMEN

Molecular communication between irradiated and unirradiated neighbouring cells initiates radiation-induced bystander effects (RIBE) and out-of-field (abscopal) effects which are both an example of the non-targeted effects (NTE) of ionising radiation (IR). Exosomes are small membrane vesicles of endosomal origin and newly identified mediators of NTE. Although exosome-mediated changes are well documented in radiation therapy and oncology, there is a lack of knowledge regarding the role of exosomes derived from inside and outside the radiation field in the early and delayed induction of NTE following IR. Therefore, here we investigated the changes in exosome profile and the role of exosomes as possible molecular signalling mediators of radiation damage. Exosomes derived from organs of whole body irradiated (WBI) or partial body irradiated (PBI) mice after 24 h and 15 days post-irradiation were transferred to recipient mouse embryonic fibroblast (MEF) cells and changes in cellular viability, DNA damage and calcium, reactive oxygen species and nitric oxide signalling were evaluated compared to that of MEF cells treated with exosomes derived from unirradiated mice. Taken together, our results show that whole and partial-body irradiation increases the number of exosomes, instigating changes in exosome-treated MEF cells, depending on the source organ and time after exposure.


Asunto(s)
Exosomas/efectos de la radiación , Traumatismos por Radiación/patología , Animales , Efecto Espectador/efectos de la radiación , Calcio/metabolismo , Supervivencia Celular/efectos de la radiación , Células Cultivadas , Daño del ADN/efectos de la radiación , Exosomas/metabolismo , Femenino , Fibroblastos/metabolismo , Fibroblastos/efectos de la radiación , Ratones , Ratones Endogámicos C57BL , Óxido Nítrico/metabolismo , Traumatismos por Radiación/metabolismo , Radiación Ionizante , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de la radiación
11.
BMC Bioinformatics ; 17(1): 212, 2016 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-27170263

RESUMEN

BACKGROUND: The underlying molecular processes representing stress responses to low-dose ionising radiation (LDIR) in mammals are just beginning to be understood. In particular, LDIR effects on the brain and their possible association with neurodegenerative disease are currently being explored using omics technologies. RESULTS: We describe a light-weight approach for the storage, analysis and distribution of relevant LDIR omics datasets. The data integration platform, called BRIDE, contains information from the literature as well as experimental information from transcriptomics and proteomics studies. It deploys a hybrid, distributed solution using both local storage and cloud technology. CONCLUSIONS: BRIDE can act as a knowledge broker for LDIR researchers, to facilitate molecular research on the systems biology of LDIR response in mammals. Its flexible design can capture a range of experimental information for genomics, epigenomics, transcriptomics, and proteomics. The data collection is available at: .


Asunto(s)
Encéfalo/efectos de la radiación , Radiación Ionizante , Investigación , Programas Informáticos , Relación Dosis-Respuesta en la Radiación , Humanos
12.
Am J Pathol ; 185(1): 85-95, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25452120

RESUMEN

Age-related cataract is the most common cause of visual impairment. Moreover, traumatic cataracts form after injury to the eye, including radiation damage. We report herein that sonic hedgehog (Shh) signaling plays a key role in cataract development and in normal lens response to radiation injury. Mice heterozygous for Patched 1 (Ptch1), the Shh receptor and negative regulator of the pathway, develop spontaneous cataract and are highly susceptible to cataract induction by exposure to ionizing radiation in early postnatal age, when lens epithelial cells undergo rapid expansion in the lens epithelium. Neonatally irradiated and control Ptch1(+/-) mice were compared for markers of progenitors, Shh pathway activation, and epithelial-to-mesenchymal transition (EMT). Molecular analyses showed increased expression of the EMT-related transforming growth factor ß/Smad signaling pathway in the neonatally irradiated lens, and up-regulation of mesenchymal markers Zeb1 and Vim. We further show a link between proliferation and the stemness property of lens epithelial cells, controlled by Shh. Our results suggest that Shh and transforming growth factor ß signaling cooperate to promote Ptch1-associated cataract development by activating EMT, and that the Nanog marker of pluripotent cells may act as the primary transcription factor on which both signaling pathways converge after damage. These findings highlight a novel function of Shh signaling unrelated to cancer and provide a new animal model to investigate the molecular pathogenesis of cataract formation.


Asunto(s)
Catarata/metabolismo , Regulación de la Expresión Génica , Cristalino/metabolismo , Receptores de Superficie Celular/genética , Alelos , Animales , Proliferación Celular , Transición Epitelial-Mesenquimal , Perfilación de la Expresión Génica , Proteínas Hedgehog/metabolismo , Heterocigoto , Proteínas de Homeodominio/metabolismo , Factores de Transcripción de Tipo Kruppel/metabolismo , Cristalino/patología , Cristalino/efectos de la radiación , Ratones , Ratones Transgénicos , Receptores Patched , Receptor Patched-1 , Receptores de Superficie Celular/metabolismo , Transducción de Señal , Proteínas Smad/metabolismo , Factor de Crecimiento Transformador beta/metabolismo , Vimentina/metabolismo , Rayos X , Homeobox 1 de Unión a la E-Box con Dedos de Zinc
13.
Stem Cells ; 31(11): 2506-16, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23897709

RESUMEN

Neural stem cells are highly susceptible to radiogenic DNA damage, however, little is known about their mechanisms of DNA damage response (DDR) and the long-term consequences of genotoxic exposure. Patched1 heterozygous mice (Ptc1(+/-)) provide a powerful model of medulloblastoma (MB), a frequent pediatric tumor of the cerebellum. Irradiation of newborn Ptc1(+/-) mice dramatically increases the frequency and shortens the latency of MB. In this model, we investigated the mechanisms through which multipotent neural progenitors (NSCs) and fate-restricted progenitor cells (PCs) of the cerebellum respond to DNA damage induced by radiation, and the long-term developmental and oncogenic consequences. These responses were assessed in mice exposed to low (0.25 Gy) or high (3 Gy) radiation doses at embryonic day 13.5 (E13.5), when NSCs giving rise to the cerebellum are specified but the external granule layer (EGL) has not yet formed, or at E16.5, during the expansion of granule PCs to form the EGL. We found crucial differences in DDR and apoptosis between NSCs and fate-restricted PCs, including lack of p21 expression in NSCs. NSCs also appear to be resistant to oncogenesis from low-dose radiation exposure but more vulnerable at higher doses. In addition, the pathway to DNA repair and the pattern of oncogenic alterations were strongly dependent on age at exposure, highlighting a differentiation-stage specificity of DNA repair pathways in NSCs and PCs. These findings shed light on the mechanisms used by NSCs and PCs to maintain genome integrity during neurogenesis and may have important implications for radiation risk assessment and for development of targeted therapies against brain tumors.


Asunto(s)
Cerebelo/crecimiento & desarrollo , Cerebelo/efectos de la radiación , Células-Madre Neurales/efectos de la radiación , Células Madre/fisiología , Células Madre/efectos de la radiación , Animales , Apoptosis/efectos de la radiación , Diferenciación Celular/fisiología , Diferenciación Celular/efectos de la radiación , Cerebelo/citología , Cerebelo/patología , Daño del ADN , Reparación del ADN , Meduloblastoma/genética , Meduloblastoma/patología , Meduloblastoma/radioterapia , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Células-Madre Neurales/citología , Células-Madre Neurales/fisiología , Células Madre/citología
14.
Cells ; 13(11)2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38891031

RESUMEN

Apolipoprotein E (ApoE) is a lipid carrier in both the peripheral and the central nervous systems (CNSs). Lipid-loaded ApoE lipoprotein particles bind to several cell surface receptors to support membrane homeostasis and brain injury repair. In the brain, ApoE is produced predominantly by astrocytes, but it is also abundantly expressed in most neurons of the CNS. In this study, we addressed the role of ApoE in the hippocampus in mice, focusing on its role in response to radiation injury. To this aim, 8-week-old, wild-type, and ApoE-deficient (ApoE-/-) female mice were acutely whole-body irradiated with 3 Gy of X-rays (0.89 Gy/min), then sacrificed 150 days post-irradiation. In addition, age-matching ApoE-/- females were chronically whole-body irradiated (20 mGy/d, cumulative dose of 3 Gy) for 150 days at the low dose-rate facility at the Institute of Environmental Sciences (IES), Rokkasho, Japan. To seek for ApoE-dependent modification during lineage progression from neural stem cells to neurons, we have evaluated the cellular composition of the dentate gyrus in unexposed and irradiated mice using stage-specific markers of adult neurogenesis. Our findings indicate that ApoE genetic inactivation markedly perturbs adult hippocampal neurogenesis in unexposed and irradiated mice. The effect of ApoE inactivation on the expression of a panel of miRNAs with an established role in hippocampal neurogenesis, as well as its transcriptional consequences in their target genes regulating neurogenic program, have also been analyzed. Our data show that the absence of ApoE-/- also influences synaptic functionality and integration by interfering with the regulation of mir-34a, mir-29b, and mir-128b, leading to the downregulation of synaptic markers PSD95 and synaptophysin mRNA. Finally, compared to acute irradiation, chronic exposure of ApoE null mice yields fewer consequences except for the increased microglia-mediated neuroinflammation. Exploring the function of ApoE in the hippocampus could have implications for developing therapeutic approaches to alleviate radiation-induced brain injury.


Asunto(s)
Apolipoproteínas E , Hipocampo , MicroARNs , Radiación Ionizante , Animales , Apolipoproteínas E/metabolismo , Apolipoproteínas E/genética , Hipocampo/metabolismo , Hipocampo/efectos de la radiación , Ratones , Femenino , MicroARNs/metabolismo , MicroARNs/genética , Ratones Endogámicos C57BL , Neuronas/metabolismo , Neuronas/efectos de la radiación , Neurogénesis/efectos de la radiación , Irradiación Corporal Total , Exposición a la Radiación/efectos adversos , Giro Dentado/metabolismo , Giro Dentado/efectos de la radiación , Giro Dentado/patología
15.
Radiother Oncol ; 195: 110267, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38614282

RESUMEN

BACKGROUND AND PURPOSE: Medulloblastoma (MB) is a common primary brain cancer in children. Proton therapy in pediatric MB is intensively studied and widely adopted. Compared to photon, proton radiations offer potential for reduced toxicity due to the characteristic Bragg Peak at the end of their path in tissue. The aim of this study was to compare the effects of irradiation with the same dose of protons or photons in Patched1 heterozygous knockout mice, a murine model predisposed to cancer and non-cancer radiogenic pathologies, including MB and lens opacity. MATERIALS AND METHODS: TOP-IMPLART is a pulsed linear proton accelerator for proton therapy applications. We compared the long-term health effects of 3 Gy of protons or photons in neonatal mice exposed at postnatal day 2, during a peculiarly susceptible developmental phase of the cerebellum, lens, and hippocampus, to genotoxic stress. RESULTS: Experimental testing of the 5 mm Spread-Out Bragg Peak (SOBP) proton beam, through evaluation of apoptotic response, confirmed that both cerebellum and hippocampus were within the SOBP irradiation field. While no differences in MB induction were observed after irradiation with protons or photons, lens opacity examination confirmed sparing of the lens after proton exposure. Marked differences in expression of neurogenesis-related genes and in neuroinflammation, but not in hippocampal neurogenesis, were observed after irradiation of wild-type mice with both radiation types. CONCLUSION: In-vivo experiments with radiosensitive mouse models improve our mechanistic understanding of the dependence of brain damage on radiation quality, thus having important implications in translational research.


Asunto(s)
Animales Recién Nacidos , Apoptosis , Hipocampo , Fotones , Terapia de Protones , Animales , Ratones , Apoptosis/efectos de la radiación , Terapia de Protones/efectos adversos , Hipocampo/efectos de la radiación , Meduloblastoma/radioterapia , Meduloblastoma/patología , Carcinogénesis/efectos de la radiación , Ratones Noqueados , Neoplasias Cerebelosas/radioterapia , Neoplasias Cerebelosas/patología , Encéfalo/efectos de la radiación , Receptor Patched-1/genética , Modelos Animales de Enfermedad , Protones/efectos adversos
16.
Cancers (Basel) ; 14(14)2022 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-35884524

RESUMEN

Recent reports have shown a link between radiation exposure and non-cancer diseases such as radiation-induced heart disease (RIHD). Radiation exposures are often inhomogeneous, and out-of-target effects have been studied in terms of cancer risk, but very few studies have been carried out for non-cancer diseases. Here, the role of miRNAs in the pathogenesis of RIHD was investigated. C57Bl/6J female mice were whole- (WBI) or partial-body-irradiated (PBI) with 2 Gy of X-rays or sham-irradiated (SI). In PBI exposure, the lower third of the mouse body was irradiated, while the upper two-thirds were shielded. From all groups, hearts were collected 15 days or 6 months post-irradiation. The MiRNome analysis at 15 days post-irradiation showed that miRNAs, belonging to the myomiR family, were highly differentially expressed in WBI and PBI mouse hearts compared with SI hearts. Raman spectral data collected 15 days and 6 months post-irradiation showed biochemical differences among SI, WBI and PBI mouse hearts. Fibrosis in WBI and PBI mouse hearts, indicated by the increased deposition of collagen and the overexpression of genes involved in myofibroblast activation, was found 6 months post-irradiation. Using an in vitro co-culture system, involving directly irradiated skeletal muscle and unirradiated ventricular cardiac human cells, we propose the role of miR-1/133a as mediators of the abscopal response, suggesting that miRNA-based strategies could be relevant for limiting tissue-dependent reactions in non-directly irradiated tissues.

17.
Int J Radiat Biol ; : 1-11, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35394411

RESUMEN

One of the principal uncertainties when estimating population risk of late effects from epidemiological data is that few radiation-exposed cohorts have been followed up to extinction. Therefore, the relative risk model has often been used to estimate radiation-associated risk and to extrapolate risk to the end of life. Epidemiological studies provide evidence that children are generally at higher risk of cancer induction than adults for a given radiation dose. However, the strength of evidence varies by cancer site and questions remain about site-specific age at exposure patterns. For solid cancers, there is a large body of evidence that excess relative risk (ERR) diminishes with increasing age at exposure. This pattern of risk is observed in the Life Span Study (LSS) as well as in other radiation-exposed populations for overall solid cancer incidence and mortality and for most site-specific solid cancers. However, there are some disparities by endpoint in the degree of variation of ERR with exposure age, with some sites (e.g., colon, lung) in the LSS incidence data showing no variation, or even increasing ERR with increasing age at exposure. The pattern of variation of excess absolute risk (EAR) with age at exposure is often similar, with EAR for solid cancers or solid cancer mortality decreasing with increasing age at exposure in the LSS. We shall review the human data from the Japanese LSS cohort, and a variety of other epidemiological data sets, including a review of types of medical diagnostic exposures, also some radiobiological animal data, all bearing on the issue of variations of radiation late-effects risk with age at exposure and with attained age. The paper includes a summary of several oral presentations given in a Symposium on "Age effects on radiation response" as part of the 67th Annual Meeting of the Radiation Research Society, held virtually on 3-6 October 2021.

18.
Proc Natl Acad Sci U S A ; 105(34): 12445-50, 2008 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-18711141

RESUMEN

The central dogma of radiation biology, that biological effects of ionizing radiation are a direct consequence of DNA damage occurring in irradiated cells, has been challenged by observations that genetic/epigenetic changes occur in unexposed "bystander cells" neighboring directly-hit cells, due to cell-to-cell communication or soluble factors released by irradiated cells. To date, the vast majority of these effects are described in cell-culture systems, while in vivo validation and assessment of biological consequences within an organism remain uncertain. Here, we describe the neonatal mouse cerebellum as an accurate in vivo model to detect, quantify, and mechanistically dissect radiation-bystander responses. DNA double-strand breaks and apoptotic cell death were induced in bystander cerebellum in vivo. Accompanying these genetic events, we report bystander-related tumor induction in cerebellum of radiosensitive Patched-1 (Ptch1) heterozygous mice after x-ray exposure of the remainder of the body. We further show that genetic damage is a critical component of in vivo oncogenic bystander responses, and provide evidence supporting the role of gap-junctional intercellular communication (GJIC) in transmission of bystander signals in the central nervous system (CNS). These results represent the first proof-of-principle that bystander effects are factual in vivo events with carcinogenic potential, and implicate the need for re-evaluation of approaches currently used to estimate radiation-associated health risks.


Asunto(s)
Efecto Espectador/efectos de la radiación , Cerebelo/efectos de la radiación , Neoplasias/etiología , Receptores de Superficie Celular/genética , Animales , Animales Recién Nacidos , Comunicación Celular , Cerebelo/patología , Daño del ADN , Uniones Comunicantes , Genes Supresores de Tumor , Heterocigoto , Ratones , Neoplasias/patología , Receptores Patched , Receptor Patched-1 , Radiación Ionizante
19.
Environ Int ; 147: 106295, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33341586

RESUMEN

The last decades have seen increased concern about the possible effects of low to moderate doses of ionizing radiation (IR) exposure on cognitive function. An interdisciplinary group of experts (biologists, epidemiologists, dosimetrists and clinicians) in this field gathered together in the framework of the European MELODI workshop on non-cancer effects of IR to summarise the state of knowledge on the topic and elaborate research recommendations for future studies in this area. Overall, there is evidence of cognitive effects from low IR doses both from biology and epidemiology, though a better characterization of effects and understanding of mechanisms is needed. There is a need to better describe the specific cognitive function or diseases that may be affected by radiation exposure. Such cognitive deficit characterization should consider the human life span, as effects might differ with age at exposure and at outcome assessment. Measurements of biomarkers, including imaging, will likely help our understanding on the mechanism of cognitive-related radiation induced deficit. The identification of loci of individual genetic susceptibility and the study of gene expression may help identify individuals at higher risk. The mechanisms behind the radiation induced cognitive effects are not clear and are likely to involve several biological pathways and different cell types. Well conducted research in large epidemiological cohorts and experimental studies in appropriate animal models are needed to improve the understanding of radiation-induced cognitive effects. Results may then be translated into recommendations for clinical radiation oncology and imaging decision making processes.


Asunto(s)
Exposición a la Radiación , Traumatismos por Radiación , Animales , Biomarcadores , Cognición , Humanos , Exposición a la Radiación/efectos adversos , Traumatismos por Radiación/epidemiología , Radiación Ionizante
20.
Mol Cancer ; 9: 53, 2010 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-20214787

RESUMEN

BACKGROUND: Medulloblastoma is amongst the most common malignant brain tumors in childhood, arising from neoplastic transformation of granule neuron precursors (GNPs) of the cerebellum via deregulation of pathways involved in cerebellar development. Deregulation of the Sonic hedgehog/Patched1 (Shh/Ptc1) signaling pathway predisposes humans and mice to medulloblastoma. In the brain, insulin-like growth factor (IGF-I) plays a critical role during development as a neurotrophic and neuroprotective factor, and in tumorigenesis, as IGF-I receptor is often activated in medulloblastomas. RESULTS: To investigate the mechanisms of genetic interactions between Shh and IGF signaling in the cerebellum, we crossed nestin/IGF-I transgenic (IGF-I Tg) mice, in which transgene expression occurs in neuron precursors, with Ptc1+/- knockout mice, a model of medulloblastoma in which cancer develops in a multistage process. The IGF-I transgene produced a marked brain overgrowth, and significantly accelerated tumor development, increasing the frequency of pre-neoplastic lesions as well as full medulloblastomas in Ptc1+/-/IGF-I Tg mice. Mechanistically, tumor promotion by IGF-I mainly affected preneoplastic stages through de novo formation of lesions, while not influencing progression rate to full tumors. We also identified a marked increase in survival and proliferation, and a strong suppression of differentiation in neural precursors. CONCLUSIONS: As a whole, our findings indicate that IGF-I overexpression in neural precursors leads to brain overgrowth and fosters external granular layer (EGL) proliferative lesions through a mechanism favoring proliferation over terminal differentiation, acting as a landscape for tumor growth. Understanding the molecular events responsible for cerebellum development and their alterations in tumorigenesis is critical for the identification of potential therapeutic targets.


Asunto(s)
Cerebelo/embriología , Cerebelo/patología , Factor I del Crecimiento Similar a la Insulina/genética , Lesiones Precancerosas/embriología , Lesiones Precancerosas/patología , Receptores de Superficie Celular/metabolismo , Animales , Apoptosis , Diferenciación Celular , Proliferación Celular , Cerebelo/metabolismo , Humanos , Proteínas de Filamentos Intermediarios/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/genética , Nestina , Neuronas/metabolismo , Neuronas/patología , Tamaño de los Órganos , Receptores Patched , Receptor Patched-1 , Fenotipo , Regiones Promotoras Genéticas/genética , Receptores de Superficie Celular/genética , Transducción de Señal , Células Madre/metabolismo , Células Madre/patología , Transgenes/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda