Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Environ Res ; 197: 111203, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33894234

RESUMEN

Changes in the frequency and magnitude of extreme weather events represent one of the key indicators of climate change and variability. These events can have an important impact on mortality rates, especially in the ageing population. This study assessed the spatial and seasonal distributions of mortality rates in mainland Spain and their association with climatic conditions over the period 1979-2016. The analysis was done on a seasonal and annual basis using 79 climatic indices and regional natural deaths data. Results indicate large spatial variability of natural deaths, which is mostly related to how the share of the elderly in the population varied across the studied regions. Spatially, both the highest mortality rates and the largest percentage of elders were found in the northwest areas of the study domain, where an extreme climate prevails, with very cold winters and hot summers. A strong seasonality effect was observed, winter shows more than 10% of natural deaths compared to the rest of the seasons. Also, results suggest a strong relation between climatic indices and natural deaths, albeit with a high spatial and seasonal variability. Climatic indices and natural deaths show a stronger correlation in winter and summer than in spring and autumn.


Asunto(s)
Cambio Climático , Frío , Anciano , Envejecimiento , Humanos , Mortalidad , Estaciones del Año , España/epidemiología
2.
Sci Total Environ ; 766: 142610, 2021 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-33071114

RESUMEN

Mediterranean mountain forests play a significant role in hydrological regulation. In this study, hydrological dynamics was examined at different temporal scales in a small mountain forest catchment in the Central Spanish Pyrenees (San Salvador), based on a 20-year dataset (1999-2019). Mean annual runoff coefficient is 0.21, and ranged from 0.02 to 0.58. The catchment has a bi-modal hydrological behavior with two hydrological periods: a dry-period between July and December, and a wet-period between January and June. During the study period, only 108 floods were recorded, suggesting a low responsiveness of the catchment, with a high variable response. Spearman correlation analysis and stepwise multivariate regression suggest that the hydrological response in the San Salvador catchment is mainly depending on water table, with antecedent moisture conditions and rainfall depth as secondary factors. Seasonal differences were also observed: during dry season, the response was mainly related to rainfall depth and rainfall intensity; in contrast in wet season, the response was mainly related to antecedent conditions (previous rainfall and base flow). Thus, the already challenging water resources management in the Mediterranean basin is magnified by the key function of forests as natural modulators of water cycle. Consequently, the study of natural forested catchments is needed and long-datasets have to be analysed to understand the role of natural Mediterranean forest in the hydrological dynamics and its evolution and adaptation in a context of Global Change.

3.
Sci Total Environ ; 769: 144702, 2021 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-33736257

RESUMEN

We analyzed the impacts of drought severity on a variety of sectors in a topographically complex basin (the upper Aragón basin 2181 km2) in the Central Spanish Pyrenees. Using diverse data sources including meteorological and hydrological observations, remote sensing and tree rings, we analyze the possible hydrological implications of drought occurrence and severity on water availability in various sectors, including downstream impacts on irrigation water supply for crop production. Results suggest varying responses in forest activity, secondary growth, plant phenology, and crop yield to drought impacts. Specifically, meteorological droughts have distinct impacts downstream, mainly due to water partitioning between streamflow and irrigation channels that transport water to crop producing areas. This implies that drought severity can extend beyond the physical boundaries of the basin, with impacts on crop productivity. This complex response to drought impacts makes it difficult to develop objective basin-scale operational definitions for monitoring drought severity. Moreover, given the high spatial variability in responses to drought across sectors, it is difficult to establish reliable drought thresholds from indices that are relevant across all socio-economic sectors. The anthropogenic impacts (e.g. water regulation projects, ecosystem services, land cover and land use changes) pose further challenges to assessing the response of different systems to drought severity. This study stresses the need to consider the seasonality of drought impacts and appropriate drought time scales to adequately assess and understand their complexity.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda