RESUMEN
The occurrence and activity of aerobic methanotrophs are influenced by environmental conditions, including pH, temperature, salinity, methane and oxygen concentrations, and nutrient availability. Aerobic methanotrophs synthesize a variety of lipids important for cell functions. However, culture-based experiments studying the influence of environmental parameters on lipid production by aerobic methanotrophs are scarce. Such information is crucial to interpret lipid patterns of methanotrophic bacteria in the environment. In this study, the alkaliphilic strain Methylotuvimicrobium alcaliphilum was cultivated under different salinities and different nitrate concentrations to assess the effect of changing conditions on the inventory of pentacyclic triterpenoids. The results indicate that hopanoid abundance is enhanced at lower salinity and higher nitrate concentration. The production of most pentacyclic triterpenoids was favored at low salinity, especially for aminotriol. Interestingly, 3-methyl-aminotetrol and tetrahymanol were favored at higher salinity. Bacteriohopanepolyols (BHPs), particularly aminotriol and 3-methyl-aminotriol, increased considerably at higher nitrate concentrations. Four novel N-containing BHPs-aminodiol, 3-methyl-aminodiol, and isomers of aminotriol and 3-methyl-aminotriol-were identified. This study highlights the significance of environmental factors for bacterial lipid production and documents the need for cultivation studies under variable conditions to utilize the full potential of the biomarker concept.
Asunto(s)
Salinidad , Triterpenos , Metano , Nitrógeno , TemperaturaRESUMEN
Methane-derived authigenic carbonate often constitutes the sole remaining record of relic methane seeps. The clumped (∆47) and oxygen isotopic composition of seep carbonates often yield inaccurate temperatures, attributed to kinetic isotope effects and modification of seawater isotope composition by hydrate water. Here, we analyzed the dual-clumped isotope (∆47/∆48) composition of authigenic carbonate from a modern methane seep. We demonstrate that aragonite forms closest to isotopic equilibrium such that its ∆47 can directly yield the correct formational temperature, whereas calcite is unambiguously biased by kinetic isotope effects. Numerical models show that the observed bias in the isotopic composition arises from rate-limiting dehydration/dehydroxylation of HCO3- alongside diffusive fractionation, which can be corrected for with analysis of carbonate ∆47/∆48 values. We demonstrate the utility of dual-clumped isotope analysis for studying seep carbonates, as it reveals the origin and magnitude of kinetic biases and can be used to reconstruct paleotemperature and seawater δ18O.
RESUMEN
The giant sulfide-oxidizing bacteria are particularly prone to preservation in the rock record, and their fossils have been identified in ancient phosphorites, cherts, and carbonates. This study reports putative spherical fossils preserved in the Devonian Hollard Mound hydrocarbon-seep deposit. Based on petrographical, mineralogical, and geochemical evidence the putative microfossils are interpreted as sulfide-oxidizing bacteria similar to the present-day genus Thiomargarita, which is also found at modern hydrocarbon seeps. The morphology, distribution, size, and occurrence of the fossilized cells show a large degree of similarity to their modern counterparts. Some of the spherical fossils adhere to worm tubes analogous to the occurrence of modern Thiomargarita on the tubes of seep-dwelling siboglinid worms. Fluorapatite crystals were identified within the fossilized cell walls, suggesting the intercellular storage of phosphorus analogous to modern Thiomargarita cells. The preservation of large sulfide-oxidizing bacteria was probably linked to changing biogeochemical processes at the Hollard Mound seep or, alternatively, may have been favored by the sulfide-oxidizing bacteria performing nitrate-dependent sulfide oxidation-a process known to induce carbonate precipitation. The presence of sulfide-oxidizing bacteria at a Devonian hydrocarbon seep highlights the similarities of past and present chemosynthesis-based ecosystems and provides valuable insight into the antiquity of biogeochemical processes and element cycling at Phanerozoic seeps.
Asunto(s)
Bacterias , Ecosistema , Marruecos , Hidrocarburos , Sulfuros , Oxidación-ReducciónRESUMEN
Benefiting from their adaptability to extreme environments, subsurface microorganisms have been discovered in sedimentary and igneous rock environments on Earth and have been advocated as candidates in the search for extraterrestrial life. In this article, we study iron-mineralized microstructures in calcite-filled veins within basaltic pillows of the late Ladinian Fernazza group (Middle Triassic, 239 Ma) in Italy. These microstructures represent diverse morphologies, including filaments, globules, nodules, and micro-digitate stromatolites, which are similar to extant iron-oxidizing bacterial communities. In situ analyses including Raman spectroscopy have been used to investigate the morphological, elemental, mineralogical, and bond-vibrational modes of the microstructures. According to the Raman spectral parameters, iron minerals preserve heterogeneous ultrastructures and crystallinities, coinciding with the morphologies and precursor microbial activities. The degree of crystallinity usually represents a microscale gradient decreasing toward previously existing microbial cells, revealing a decline of mineralization due to microbial activities. This study provides an analog of possible rock-dwelling subsurface life on Mars or icy moons and advocates Raman spectroscopy as an efficient tool for in situ analyses. We put forward the concept that ultrastructural characteristics of minerals described by Raman spectral parameters corresponding to microscale morphologies could be employed as carbon-lean biosignatures in future space missions.
Asunto(s)
Hierro , Marte , Hierro/análisis , Medio Ambiente Extraterrestre/química , Silicatos , Minerales/análisis , Exobiología/métodosRESUMEN
Methane seeps are typified by the formation of authigenic carbonates, many of which exhibit corrosion surfaces and secondary porosity believed to be caused by microbial carbonate dissolution. Aerobic methane oxidation and sulfur oxidation are two processes capable of inducing carbonate corrosion at methane seeps. Although the potential of aerobic methanotrophy to dissolve carbonate was confirmed in laboratory experiments, this process has not been studied in the environment to date. Here, we report on a carbonate corrosion experiment carried out in the REGAB Pockmark, Gabon-Congo-Angola passive margin, in which marble cubes were deployed for 2.5 years at two sites (CAB-B and CAB-C) with apparent active methane seepage and one site (CAB-D) without methane seepage. Marble cubes exposed to active seepage (experiment CAB-C) were found to be affected by a new type of microbioerosion. Based on 16S rRNA gene analysis, the biofilms adhering to the bioeroded marble mostly consisted of aerobic methanotrophic bacteria, predominantly belonging to the uncultured Hyd24-01 clade. The presence of abundant 13 C-depleted lipid biomarkers including fatty acids (n-C16:1ω8c , n-C18:1ω8c , n-C16:1ω5t ), various 4-mono- and 4,4-dimethyl sterols, and diplopterol agrees with the dominance of aerobic methanotrophs in the CAB-C biofilms. Among the lipids of aerobic methanotrophs, the uncommon 4α-methylcholest-8(14)-en-3ß,25-diol is interpreted to be a specific biomarker for the Hyd24-01 clade. The combination of textural, genetic, and organic geochemical evidence suggests that aerobic methanotrophs are the main drivers of carbonate dissolution observed in the CAB-C experiment at the REGAB pockmark.
Asunto(s)
Sedimentos Geológicos , Metano , Sedimentos Geológicos/microbiología , Metano/análisis , ARN Ribosómico 16S/genética , Corrosión , Filogenia , Carbonatos/análisis , Carbonato de Calcio , Oxidación-Reducción , BacteriasRESUMEN
Methanogenic archaea possess diverse metabolic characteristics and are an ecologically and biotechnologically important group of anaerobic microorganisms. Although the scientific and biotechnological value of methanogens is evident with regard to their methane-producing physiology, little is known about their amino acid excretion, and virtually nothing is known about the lipidome at different substrate concentrations and temperatures on a quantitative comparative basis. Here, we present the lipidome and a comprehensive quantitative analysis of proteinogenic amino acid excretion as well as methane, water, and biomass production of the three autotrophic, hydrogenotrophic methanogens Methanothermobacter marburgensis, Methanothermococcus okinawensis, and Methanocaldococcus villosus under varying temperatures and nutrient supplies. The patterns and rates of production of excreted amino acids and the lipidome are unique for each tested methanogen and can be modulated by varying the incubation temperature and substrate concentration, respectively. Furthermore, the temperature had a significant influence on the lipidomes of the different archaea. The water production rate was much higher, as anticipated from the rate of methane production for all studied methanogens. Our results demonstrate the need for quantitative comparative physiological studies connecting intracellular and extracellular constraints of organisms to holistically investigate microbial responses to environmental conditions. IMPORTANCE Biological methane production by methanogenic archaea has been well studied for biotechnological purposes. This study reveals that methanogenic archaea actively modulate their lipid inventory and proteinogenic amino acid excretion pattern in response to environmental changes and the possible utilization of methanogenic archaea as microbial cell factories for the targeted production of lipids and amino acids.
Asunto(s)
Archaea , Euryarchaeota , Archaea/metabolismo , Temperatura , Lipidómica , Euryarchaeota/metabolismo , Metano , Agua/metabolismoRESUMEN
Primary gypsum deposits, which accumulated in the Mediterranean Basin during the so-called Messinian salinity crisis (5.97-5.33 Ma), represent an excellent archive of microbial life. We investigated the molecular fossil inventory and the corresponding compound-specific δ13 C values of bottom-grown gypsum formed during the first stage of the crisis in four marginal basins across the Mediterranean (Nijar, Spain; Vena del Gesso, Italy; Heraklion, Crete; and Psematismenos, Cyprus). All studied gypsum samples contain intricate networks of filamentous microfossils, whose phylogenetic affiliation has been debated for a long time. Petrographic analysis, molecular fossil inventories (hydrocarbons, alcohols, and carboxylic acids), and carbon stable isotope patterns suggest that the mazes of filamentous fossils represent benthic microbial assemblages dominated by chemotrophic sulfide-oxidizing bacteria; in some of the samples, the body fossils are accompanied by lipids produced by sulfate-reducing bacteria. Abundant isoprenoid alcohols including diphytanyl glycerol diethers (DGDs) and glycerol dibiphytanyl glycerol tetraethers (GDGTs), typified by highly variable carbon stable isotope composition with δ13 C values spanning from -40 to -14, reveal the presence of planktic and benthic archaeal communities dwelling in Messinian paleoenvironments. The compound inventory of archaeal lipids indicates the existence of a stratified water column, with a normal marine to diluted upper water column and more saline deeper waters. This study documents the lipid biomarker inventory of microbial life preserved in ancient gypsum deposits, helping to reconstruct the widely debated conditions under which Messinian gypsum formed.
Asunto(s)
Sulfato de Calcio , Sedimentos Geológicos , Archaea , Bacterias , Sedimentos Geológicos/microbiología , FilogeniaRESUMEN
During the earliest Triassic microbial mats flourished in the photic zones of marginal seas, generating widespread microbialites. It has been suggested that anoxic conditions in shallow marine environments, linked to the end-Permian mass extinction, limited mat-inhibiting metazoans allowing for this microbialite expansion. The presence of a diverse suite of proxies indicating oxygenated shallow sea-water conditions (metazoan fossils, biomarkers and redox proxies) from microbialite successions have, however, challenged the inference of anoxic conditions. Here, the distribution and faunal composition of Griesbachian microbialites from China, Iran, Turkey, Armenia, Slovenia and Hungary are investigated to determine the factors that allowed microbialite-forming microbial mats to flourish following the end-Permian crisis. The results presented here show that Neotethyan microbial buildups record a unique faunal association due to the presence of keratose sponges, while the Palaeotethyan buildups have a higher proportion of molluscs and the foraminifera Earlandia. The distribution of the faunal components within the microbial fabrics suggests that, except for the keratose sponges and some microconchids, most of the metazoans were transported into the microbial framework via wave currents. The presence of both microbialites and metazoan associations were limited to oxygenated settings, suggesting that a factor other than anoxia resulted in a relaxation of ecological constraints following the mass extinction event. It is inferred that the end-Permian mass extinction event decreased the diversity and abundance of metazoans to the point of significantly reducing competition, allowing photosynthesis-based microbial mats to flourish in shallow water settings and resulting in the formation of widespread microbialites.
RESUMEN
Cold-water coral (CWC) mounds are build-ups comprised of coral-dominated intervals alternating with a mixed carbonate-siliciclastic matrix. At some locations, CWC mounds are influenced by methane seepage, but the impact of methane on CWC mounds is poorly understood. To constrain the potential impact of methane on CWC mound growth, lipid biomarker investigations were combined with mineralogical and petrographic analyses to investigate the anaerobic oxidation of methane (AOM) and authigenic carbonate formation in sediment from a seep-affected CWC mound in the Gulf of Cadiz. The occurrence of AOM was confirmed by characteristic lipids found within a semi-lithified zone (SLZ) consisting of authigenic aragonite, high-magnesium calcite and calcium-excess dolomite. The formation of high-Mg calcite is attributed to AOM, acting as a lithifying agent. Aragonite is only a minor phase. Ca-excess dolomite in the SLZ and upper parts may be formed by organoclastic sulphate reduction, favouring precipitation by increased alkalinity. The AOM biomarkers in the SLZ include isoprenoid-based archaeal membrane lipids, such as abundant glycerol dibiphytanyl glycerol tetraethers (GDGTs) dominated by GDGT-2. The δ13 C values of GDGT-2, measured as ether-cleaved monocyclic biphytanes, are as low as -100 versus V-PDB. Further, bacterial dialkyl glycerol diethers with two anteiso-C15 alkyl chains and δ13 C values of -81 are interpreted as biomarkers of sulphate-reducing bacteria. The lipid biomarker signatures and mineralogical patterns suggest that anaerobic methane-oxidizing archaea of the ANME-1 group thrived in the subsurface at times of slow and diffusive methane seepage. Petrographic analyses revealed that the SLZ was exhumed at some point (e.g. signs of bioerosion of the semi-lithified sediment), providing a hard substrate for CWC larval settlement. In addition, this work reveals that AOM-induced semi-lithification likely played a role in mound stabilization. Lipid biomarker analysis proves to be a powerful tool to disentangle early diagenetic processes induced by microbial metabolisms.
Asunto(s)
Antozoos , Anaerobiosis , Animales , Archaea , Biomarcadores , Carbonatos , Sedimentos Geológicos , Lípidos , Metano , Oxidación-Reducción , FilogeniaRESUMEN
Brachiopods were thought to have dominated deep-sea hydrothermal vents and hydrocarbon seeps for most of the Paleozoic and Mesozoic, and were believed to have been outcompeted and replaced by chemosymbiotic bivalves during the Late Cretaceous. But recent findings of bivalve-rich seep deposits of Paleozoic and Mesozoic age have questioned this paradigm. By tabulating the generic diversity of the dominant brachiopod and bivalve clades-dimerelloid brachiopods and chemosymbiotic bivalves-from hydrocarbon seeps through the Phanerozoic, we show that their evolutionary trajectories are largely unrelated to one another, indicating that they have not been competing for the same resources. We hypothesize that the dimerelloid brachiopods generally preferred seeps with abundant hydrocarbons in the bottom waters above the seep, such as oil seeps or methane seeps with diffusive seepage, whereas seeps with strong, advective fluid flow and hence abundant hydrogen sulfide were less favorable for them. At methane seeps typified by diffusive seepage and oil seeps, oxidation of hydrocarbons in the bottom water by chemotrophic bacteria enhances the growth of bacterioplankton, on which the brachiopods could have filter fed. Whereas chemosymbiotic bivalves mostly relied on sulfide-oxidizing symbionts for nutrition, for the brachiopods aerobic bacterial oxidation of methane and other hydrocarbons played a more prominent role. The availability of geofuels (i.e. the reduced chemical compounds used in chemosynthesis such as hydrogen sulfide, methane, and other hydrocarbons) at seeps is mostly governed by fluid flow rates, geological setting, and marine sulfate concentrations. Thus rather than competition, we suggest that geofuel type and availability controlled the distribution of brachiopods and bivalves at hydrocarbon seeps through the Phanerozoic.
Asunto(s)
Biodiversidad , Evolución Biológica , Bivalvos/fisiología , Sedimentos Geológicos/análisis , Hidrocarburos/metabolismo , Respiraderos Hidrotermales , Invertebrados/fisiología , Animales , Bacterias/clasificación , Bacterias/metabolismo , Ecosistema , Metano/metabolismo , Agua de Mar/microbiologíaRESUMEN
Large native (i.e., elemental) sulfur deposits can be part of caprock assemblages found on top of or in lateral position to salt diapirs and as stratabound mineralization in gypsum and anhydrite lithologies. Native sulfur is formed when hydrocarbons come in contact with sulfate minerals in presence of liquid water. The prevailing model for native sulfur formation in such settings is that sulfide produced by sulfate-reducing bacteria is oxidized to zero-valent sulfur in presence of molecular oxygen (O2). Although possible, such a scenario is problematic because: (1) exposure to oxygen would drastically decrease growth of microbial sulfate-reducing organisms, thereby slowing down sulfide production; (2) on geologic timescales, excess supply with oxygen would convert sulfide into sulfate rather than native sulfur; and (3) to produce large native sulfur deposits, enormous amounts of oxygenated water would need to be brought in close proximity to environments in which ample hydrocarbon supply sustains sulfate reduction. However, sulfur stable isotope data from native sulfur deposits emplaced at a stage after the formation of the host rocks indicate that the sulfur was formed in a setting with little solute exchange with the ambient environment and little supply of dissolved oxygen. We deduce that there must be a process for the formation of native sulfur in absence of an external oxidant for sulfide. We hypothesize that in systems with little solute exchange, sulfate-reducing organisms, possibly in cooperation with other anaerobic microbial partners, drive the formation of native sulfur deposits. In order to cope with sulfide stress, microbes may shift from harmful sulfide production to non-hazardous native sulfur production. We propose four possible mechanisms as a means to form native sulfur: (1) a modified sulfate reduction process that produces sulfur compounds with an intermediate oxidation state, (2) coupling of sulfide oxidation to methanogenesis that utilizes methylated compounds, acetate or carbon dioxide, (3) ammonium oxidation coupled to sulfate reduction, and (4) sulfur comproportionation of sulfate and sulfide. We show these reactions are thermodynamically favorable and especially useful in environments with multiple stressors, such as salt and dissolved sulfide, and provide evidence that microbial species functioning in such environments produce native sulfur. Integrating these insights, we argue that microbes may form large native sulfur deposits in absence of light and external oxidants such as O2, nitrate, and metal oxides. The existence of such a process would not only explain enigmatic occurrences of native sulfur in the geologic record, but also provide an explanation for cryptic sulfur and carbon cycling beneath the seabed.
RESUMEN
Sponges host a remarkable diversity of microbial symbionts, however, the benefit their microbes provide is rarely understood. Here, we describe two new sponge species from deep-sea asphalt seeps and show that they live in a nutritional symbiosis with methane-oxidizing (MOX) bacteria. Metagenomics and imaging analyses revealed unusually high amounts of MOX symbionts in hosts from a group previously assumed to have low microbial abundances. These symbionts belonged to the Marine Methylotrophic Group 2 clade. They are host-specific and likely vertically transmitted, based on their presence in sponge embryos and streamlined genomes, which lacked genes typical of related free-living MOX. Moreover, genes known to play a role in host-symbiont interactions, such as those that encode eukaryote-like proteins, were abundant and expressed. Methane assimilation by the symbionts was one of the most highly expressed metabolic pathways in the sponges. Molecular and stable carbon isotope patterns of lipids confirmed that methane-derived carbon was incorporated into the hosts. Our results revealed that two species of sponges, although distantly related, independently established highly specific, nutritional symbioses with two closely related methanotrophs. This convergence in symbiont acquisition underscores the strong selective advantage for these sponges in harboring MOX bacteria in the food-limited deep sea.
Asunto(s)
Bacterias/metabolismo , Metano/metabolismo , Poríferos/metabolismo , Poríferos/microbiología , Simbiosis , Animales , Carbono/metabolismo , Hidrocarburos , Metagenómica , Oxidación-Reducción , Agua de Mar/microbiologíaRESUMEN
Lipids and amino acids are regarded as important biomarkers for the search for extraterrestrial life in the Solar System. Such biomarkers may be used to trace methanogenic life on other planets or moons in the Solar System, such as Saturn's icy moon Enceladus. However, little is known about the environmental conditions shaping the synthesis of lipids and amino acids. Here, we present the lipid production and amino acid excretion patterns of the methanogenic archaeon Methanothermococcus okinawensis after exposing it to different multivariate concentrations of the inhibitors ammonium, formaldehyde, and methanol present in the Enceladian plume. M. okinawensis shows different patterns of lipid and amino acids excretion, depending on the amount of these inhibitors in the growth medium. While methanol did not show a significant impact on growth, lipid or amino acid production rates, ammonium and formaldehyde strongly affected these parameters. These findings are important for understanding the eco-physiology of methanogens on Earth and have implications for the use of biomarkers as possible signs of extraterrestrial life for future space missions in the Solar System.
RESUMEN
The detection of silica-rich dust particles, as an indication for ongoing hydrothermal activity, and the presence of water and organic molecules in the plume of Enceladus, have made Saturn's icy moon a hot spot in the search for potential extraterrestrial life. Methanogenic archaea are among the organisms that could potentially thrive under the predicted conditions on Enceladus, considering that both molecular hydrogen (H2) and methane (CH4) have been detected in the plume. Here we show that a methanogenic archaeon, Methanothermococcus okinawensis, can produce CH4 under physicochemical conditions extrapolated for Enceladus. Up to 72% carbon dioxide to CH4 conversion is reached at 50 bar in the presence of potential inhibitors. Furthermore, kinetic and thermodynamic computations of low-temperature serpentinization indicate that there may be sufficient H2 gas production to serve as a substrate for CH4 production on Enceladus. We conclude that some of the CH4 detected in the plume of Enceladus might, in principle, be produced by methanogens.
Asunto(s)
Exobiología , Medio Ambiente Extraterrestre/química , Metano/biosíntesis , Saturno , Atmósfera/química , Presión Atmosférica , Hidrógeno/metabolismo , Methanobacteriaceae/crecimiento & desarrollo , Methanobacteriaceae/metabolismo , Methanococcaceae/crecimiento & desarrollo , Methanococcaceae/metabolismo , Methanococcus/crecimiento & desarrollo , Methanococcus/metabolismo , Modelos Biológicos , Nave EspacialRESUMEN
Different sulfur isotope compositions of authigenic pyrite typically result from the sulfate-driven anaerobic oxidation of methane (SO4-AOM) and organiclastic sulfate reduction (OSR) in marine sediments. However, unravelling the complex pyritization sequence is a challenge because of the coexistence of different sequentially formed pyrite phases. This manuscript describes a sample preparation procedure that enables the use of secondary ion mass spectroscopy (SIMS) to obtain in situ δ34S values of various pyrite generations. This allows researchers to constrain how SO4-AOM affects pyritization in methane-bearing sediments. SIMS analysis revealed an extreme range in δ34S values, spanning from -41.6 to +114.8, which is much wider than the range of δ34S values obtained by the traditional bulk sulfur isotope analysis of the same samples. Pyrite in the shallow sediment mainly consists of 34S-depleted framboids, suggesting early diagenetic formation by OSR. Deeper in the sediment, more pyrite occurs as overgrowths and euhedral crystals, which display much higher SIMS δ34S values than the framboids. Such 34S-enriched pyrite is related to enhanced SO4-AOM at the sulfate-methane transition zone, postdating OSR. High-resolution in situ SIMS sulfur isotope analyses allow for the reconstruction of the pyritization processes, which cannot be resolved by bulk sulfur isotope analysis.
Asunto(s)
Sedimentos Geológicos/química , Hierro/química , Metano/química , Sulfuros/química , Isótopos de Azufre/químicaRESUMEN
Authigenic carbonate build-ups develop at seafloor methane-seeps, where microbially mediated sulphate-dependent anaerobic oxidation of methane facilitates carbonate precipitation. Despite being valuable recorders of past methane seepage events, their role as archives of atmospheric processes has not been examined. Here we show that cyclic sedimentation pulses related to the Indian monsoon in concert with authigenic precipitation of methane-derived aragonite gave rise to a well-laminated carbonate build-up within the oxygen minimum zone off Pakistan (northern Arabian Sea). U-Th dating indicates that the build-up grew during past ~1,130 years, creating an exceptional high-resolution archive of the Indian monsoon system. Monsoon-controlled formation of seep-carbonates extends the known environmental processes recorded by seep-carbonates, revealing a new relationship between atmospheric and seafloor processes.
RESUMEN
Aerobic methane oxidation (AMO) is one of the primary biologic pathways regulating the amount of methane (CH4) released into the environment. AMO acts as a sink of CH4, converting it into carbon dioxide before it reaches the atmosphere. It is of interest for (paleo)climate and carbon cycling studies to identify lipid biomarkers that can be used to trace AMO events, especially at times when the role of methane in the carbon cycle was more pronounced than today. AMO bacteria are known to synthesise bacteriohopanepolyol (BHP) lipids. Preliminary evidence pointed towards 35-aminobacteriohopane-30,31,32,33,34-pentol (aminopentol) being a characteristic biomarker for Type I methanotrophs. Here, the BHP compositions were examined for species of the recently described novel Type I methanotroph bacterial genera Methylomarinum and Methylomarinovum, as well as for a novel species of a Type I Methylomicrobium. Aminopentol was the most abundant BHP only in Methylomarinovum caldicuralii, while Methylomicrobium did not produce aminopentol at all. In addition to the expected regular aminotriol and aminotetrol BHPs, novel structures tentatively identified as methylcarbamate lipids related to C-35 amino-BHPs (MC-BHPs) were found to be synthesised in significant amounts by some AMO cultures. Subsequently, sediments and authigenic carbonates from methane-influenced marine environments were analysed. Most samples also did not contain significant amounts of aminopentol, indicating that aminopentol is not a useful biomarker for marine aerobic methanotophic bacteria. However, the BHP composition of the marine samples do point toward the novel MC-BHPs components being potential new biomarkers for AMO.
Asunto(s)
Organismos Acuáticos/metabolismo , Ecosistema , Methylococcaceae/metabolismo , Aerobiosis , Biomarcadores/metabolismo , Ácidos Carboxílicos/metabolismo , Sedimentos Geológicos/análisis , Sedimentos Geológicos/microbiología , Lípidos/análisis , Metano/metabolismoRESUMEN
Fungi have been recognized as a frequent colonizer of subseafloor basalt but a substantial understanding of their abundance, diversity and ecological role in this environment is still lacking. Here we report fossilized cryptoendolithic fungal communities represented by mainly Zygomycetes and minor Ascomycetes in vesicles of dredged volcanic rocks (basanites) from the Vesteris Seamount in the Greenland Basin. Zygomycetes had not been reported from subseafloor basalt previously. Different stages in zygospore formation are documented in the studied samples, representing a reproduction cycle. Spore structures of both Zygomycetes and Ascomycetes are mineralized by romanechite-like Mn oxide phases, indicating an involvement in Mn(II) oxidation to form Mn(III,VI) oxides. Zygospores still exhibit a core of carbonaceous matter due to their resistance to degradation. The fungi are closely associated with fossiliferous marine sediments that have been introduced into the vesicles. At the contact to sediment infillings, fungi produced haustoria that penetrated and scavenged on the remains of fragmented marine organisms. It is most likely that such marine debris is the main carbon source for fungi in shallow volcanic rocks, which favored the establishment of vital colonies.
Asunto(s)
Ascomicetos/aislamiento & purificación , Fósiles , Hongos no Clasificados/aislamiento & purificación , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Silicatos/química , Ascomicetos/clasificación , Groenlandia , Compuestos de Manganeso/química , Óxidos/química , Espectrometría Raman , Esporas Fúngicas/aislamiento & purificaciónRESUMEN
Modern and Cenozoic deep-sea hydrothermal-vent and methane-seep communities are dominated by large tubeworms, bivalves and gastropods. In contrast, many Early Cretaceous seep communities were dominated by the largest Mesozoic rhynchonellid brachiopod, the dimerelloid Peregrinella, the paleoecologic and evolutionary traits of which are still poorly understood. We investigated the nature of Peregrinella based on 11 occurrences world wide and a literature survey. All in situ occurrences of Peregrinella were confirmed as methane-seep deposits, supporting the view that Peregrinella lived exclusively at methane seeps. Strontium isotope stratigraphy indicates that Peregrinella originated in the late Berriasian and disappeared after the early Hauterivian, giving it a geologic range of ca. 9.0 (+1.45/-0.85) million years. This range is similar to that of rhynchonellid brachiopod genera in general, and in this respect Peregrinella differs from seep-inhabiting mollusks, which have, on average, longer geologic ranges than marine mollusks in general. Furthermore, we found that (1) Peregrinella grew to larger sizes at passive continental margins than at active margins; (2) it grew to larger sizes at sites with diffusive seepage than at sites with advective fluid flow; (3) despite its commonly huge numerical abundance, its presence had no discernible impact on the diversity of other taxa at seep sites, including infaunal chemosymbiotic bivalves; and (4) neither its appearance nor its extinction coincides with those of other seep-restricted taxa or with global extinction events during the late Mesozoic. A preference of Peregrinella for diffusive seepage is inferred from the larger average sizes of Peregrinella at sites with more microcrystalline carbonate (micrite) and less seep cements. Because other seep-inhabiting brachiopods occur at sites where such cements are very abundant, we speculate that the various vent- and seep-inhabiting dimerelloid brachiopods since Devonian time may have adapted to these environments in more than one way.