Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
1.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36901828

RESUMEN

Papain-like protease (PLpro) is critical to COVID-19 infection. Therefore, it is a significant target protein for drug development. We virtually screened a 26,193 compound library against the PLpro of SARS-CoV-2 and identified several drug candidates with convincing binding affinities. The three best compounds all had better estimated binding energy than those of the drug candidates proposed in previous studies. By analyzing the docking results for the drug candidates identified in this and previous studies, we demonstrate that the critical interactions between the compounds and PLpro proposed by the computational approaches are consistent with those proposed by the biological experiments. In addition, the predicted binding energies of the compounds in the dataset showed a similar trend as their IC50 values. The predicted ADME and drug-likeness properties also suggested that these identified compounds can be used for COVID-19 treatment.


Asunto(s)
COVID-19 , Humanos , Evaluación Preclínica de Medicamentos , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19 , Papaína , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas , Antivirales , Simulación de Dinámica Molecular
2.
PLoS Pathog ; 15(1): e1007515, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30629698

RESUMEN

Post-translational modification of host and viral proteins by ubiquitin (Ub) and Ub-like proteins, such as interferon stimulated gene product 15 (ISG15), plays a key role in response to infection. Viruses have been increasingly identified that contain proteases possessing deubiquitinase (DUB) and/or deISGylase functions. This includes viruses in the Nairoviridae family that encode a viral homologue of the ovarian tumor protease (vOTU). vOTU activity was recently demonstrated to be critical for replication of the often-fatal Crimean-Congo hemorrhagic fever virus, with DUB activity suppressing the type I interferon responses and deISGylase activity broadly removing ISG15 conjugated proteins. There are currently about 40 known nairoviruses classified into fourteen species. Recent genomic characterization has revealed a high degree of diversity, with vOTUs showing less than 25% amino acids identities within the family. Previous investigations have been limited to only a few closely related nairoviruses, leaving it unclear what impact this diversity has on vOTU function. To probe the effects of vOTU diversity on enzyme activity and specificity, we assessed representative vOTUs spanning the Nairoviridae family towards Ub and ISG15 fluorogenic substrates. This revealed great variation in enzymatic activity and specific substrate preferences. A subset of the vOTUs were further assayed against eight biologically relevant di-Ub substrates, uncovering both common trends and distinct preferences of poly-Ub linkages by vOTUs. Four novel X-ray crystal structures were obtained that provide a biochemical rationale for vOTU substrate preferences and elucidate structural features that distinguish the vOTUs, including a motif in the Hughes orthonairovirus species that has not been previously observed in OTU domains. Additionally, structure-informed mutagenesis provided the first direct evidence of a second site involved in di-Ub binding for vOTUs. These results provide new insight into nairovirus evolution and pathogenesis, and further enhances the development of tools for therapeutic purposes.


Asunto(s)
Nairovirus/genética , Neoplasias Ováricas/virología , Péptido Hidrolasas/genética , Cristalografía por Rayos X/métodos , Enzimas Desubicuitinizantes/metabolismo , Femenino , Variación Genética/genética , Genómica , Humanos , Nairovirus/patogenicidad , Neoplasias Ováricas/metabolismo , Ovario/metabolismo , Péptido Hidrolasas/metabolismo , Filogenia , Unión Proteica , Dominios Proteicos , Procesamiento Proteico-Postraduccional/genética , Proteolisis , Homología de Secuencia de Aminoácido , Ubiquitina/metabolismo , Ubiquitinación/genética , Ubiquitinas/metabolismo , Proteínas Virales/metabolismo
3.
Chem Res Toxicol ; 34(3): 804-816, 2021 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-33538594

RESUMEN

The recent use of organophosphate nerve agents in Syria, Malaysia, Russia, and the United Kingdom has reinforced the potential threat of their intentional release. These agents act through their ability to inhibit human acetylcholinesterase (hAChE; E.C. 3.1.1.7), an enzyme vital for survival. The toxicity of hAChE inhibition via G-series nerve agents has been demonstrated to vary widely depending on the G-agent used. To gain insight into this issue, the structures of hAChE inhibited by tabun, sarin, cyclosarin, soman, and GP were obtained along with the inhibition kinetics for these agents. Through this information, the role of hAChE active site plasticity in agent selectivity is revealed. With reports indicating that the efficacy of reactivators can vary based on the nerve agent inhibiting hAChE, human recombinatorially expressed hAChE was utilized to define these variations for HI-6 among various G-agents. To identify the structural underpinnings of this phenomenon, the structures of tabun, sarin, and soman-inhibited hAChE in complex with HI-6 were determined. This revealed how the presence of G-agent adducts impacts reactivator access and placement within the active site. These insights will contribute toward a path of next-generation reactivators and an improved understanding of the innate issues with the current reactivators.


Asunto(s)
Acetilcolinesterasa/metabolismo , Inhibidores de la Colinesterasa/efectos adversos , Agentes Nerviosos/efectos adversos , Oximas/efectos adversos , Compuestos de Piridinio/efectos adversos , Acetilcolinesterasa/química , Acetilcolinesterasa/aislamiento & purificación , Inhibidores de la Colinesterasa/química , Humanos , Estructura Molecular , Agentes Nerviosos/química , Oximas/química , Compuestos de Piridinio/química
4.
J Pharm Pharm Sci ; 24: 390-399, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34319871

RESUMEN

PURPOSE: SARS-CoV-2 infection is associated with substantial mortality and high morbidity. This study tested the effect of angiotensin II type I receptor blocker, losartan, on SARS-CoV-2 replication and inhibition of the papain-like protease of the virus. METHODS: The dose-dependent inhibitory effect of losartan, in concentrations from 1µM to 100µM as determined by quantitative cell analysis combining fluorescence microscopy, image processing, and cellular measurements (Cellomics analysis) on SARS-CoV-2 replication was investigated in Vero E6 cells. The impact of losartan on deubiquitination and deISGylation of SARS-CoV-2 papain-like protease (PLpro) were also evaluated.  Results: Losartan reduced PLpro cleavage of tetraUbiquitin to diUbiquitin.  It was less effective in inhibiting PLpro's cleavage of ISG15-AMC than Ubiquitin-AMC.  To determine if losartan inhibited SARS-CoV-2 replication, losartan treatment of SARS-CoV-2 infected Vero E6 was examined. Losartan treatment one hour prior to SARS-CoV-2 infection reduced levels of SARS-CoV-2 nuclear protein, an indicator of virus replication, by 80% and treatment one-hour post-infection decreased viral replication by 70%. CONCLUSION: Losartan was not an effective inhibitor of deubiquitinase or deISGylase activity of the PLpro but affected the SARS-CoV-2 replication of Vero E6 cells in vitro.  As losartan has a favorable safety profile and is currently available it has features necessary for efficacious drug repurposing and treatment of COVID-19.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Antivirales/farmacología , Losartán/farmacología , SARS-CoV-2/efectos de los fármacos , Animales , Chlorocebus aethiops , Biología Computacional , Proteasas Similares a la Papaína de Coronavirus/antagonistas & inhibidores , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Enzimas Desubicuitinizantes/antagonistas & inhibidores , Enzimas Desubicuitinizantes/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/fisiología , Ubiquitina/metabolismo , Células Vero , Replicación Viral/efectos de los fármacos , Tratamiento Farmacológico de COVID-19
5.
Molecules ; 26(24)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34946521

RESUMEN

An increasing number of studies have demonstrated the antiviral nature of polyphenols, and many polyphenols have been proposed to inhibit SARS-CoV or SARS-CoV-2. Our previous study revealed the inhibitory mechanisms of polyphenols against DNA polymerase α and HIV reverse transcriptase to show that polyphenols can block DNA elongation by competing with the incoming NTPs. Here we applied computational approaches to examine if some polyphenols can also inhibit RNA polymerase (RdRp) in SARS-CoV-2, and we identified some better candidates than remdesivir, the FDA-approved drug against RdRp, in terms of estimated binding affinities. The proposed compounds will be further examined to develop new treatments for COVID-19.


Asunto(s)
Antivirales/farmacología , Polifenoles/farmacología , SARS-CoV-2/efectos de los fármacos , Antocianinas/química , Antocianinas/farmacología , Antivirales/aislamiento & purificación , Simulación de Dinámica Molecular , Estructura Molecular , Polifenoles/química , ARN Polimerasa Dependiente del ARN , SARS-CoV-2/enzimología , Tratamiento Farmacológico de COVID-19
6.
J Am Chem Soc ; 142(20): 9147-9151, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32364709

RESUMEN

We describe the synthesis of 10-aza-9-oxakalkitoxin, an N,N,O-trisubstituted hydroxylamine-based analog, or hydroxalog, of the cytotoxic marine natural product kalkitoxin in which the -NMe-O- moiety replaces a -CHMe-CH2- unit in the backbone of the natural product. 10-Aza-9-oxakalkitoxin displays potent and selective cytotoxicity (IC50 2.4 ng mL-1) comparable to that of kalkitoxin itself (IC50 3.2 ng mL-1) against the human hepato-carcinoma cell line HepG2 over both the human leukemia cell line CEM and the normal hematopoietic CFU-GM. Like kalkitoxin, and contrary to the common expectation for hydroxylamines, 10-aza-9-oxakalkitoxin is not mutagenic.


Asunto(s)
Antineoplásicos/farmacología , Productos Biológicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular
7.
J Virol ; 91(23)2017 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-28931677

RESUMEN

Middle East respiratory syndrome coronavirus (MERS-CoV) is an emerging human pathogen that is the causative agent for Middle East respiratory syndrome (MERS). With MERS outbreaks resulting in over 35% fatalities and now spread to 27 countries, MERS-CoV poses a significant ongoing threat to global human health. As part of its viral genome, MERS-CoV encodes a papain-like protease (PLpro) that has been observed to act as a deubiquitinase and deISGylase to antagonize type I interferon (IFN-I) immune pathways. This activity is in addition to its viral polypeptide cleavage function. Although the overall impact of MERS-CoV PLpro function is observed to be essential, difficulty has been encountered in delineating the importance of its separate functions, particularly its deISGylase activity. As a result, the interface of MERS-CoV and human interferon-stimulated gene product 15 (hISG15) was probed with isothermal calorimetry, which suggests that the C-terminal domain of hISG15 is principally responsible for interactions. Subsequently, the structure of MERS-CoV PLpro was solved to 2.4 Å in complex with the C-terminal domain of hISG15. Utilizing this structural information, mutants were generated that lacked appreciable deISGylase activity but retained wild-type deubiquitinase and peptide cleavage activities. Hence, this provides a new platform for understanding viral deISGylase activity within MERS-CoV and other CoVs.IMPORTANCE Coronaviruses, such as Middle East respiratory syndrome coronavirus (MERS-CoV), encode a papain-like protease (PLpro) that possesses the ability to antagonize interferon immune pathways through the removal of ubiquitin and interferon-stimulated gene product 15 (ISG15) from target proteins. The lack of CoV proteases with attenuated deISGylase activity has been a key obstacle in delineating the impact between deubiquitinase and deISGylase activities on viral host evasion and pathogenesis. Here, biophysical techniques revealed that MERS-CoV PLpro chiefly engages human ISG15 through its C-terminal domain. The first structure of MERS-CoV PLpro in complex with this domain exposed the interface between these two entities. Employing these structural insights, mutations were employed to selectively remove deISGylase activity with no appreciable impact on its other deubiquitinase and peptide cleavage biochemical properties. Excitingly, this study introduces a new tool to probe the pathogenesis of MERS-CoV and related viruses through the removal of viral deISGylase activity.


Asunto(s)
Cisteína Endopeptidasas/química , Cisteína Endopeptidasas/metabolismo , Citocinas/química , Citocinas/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/enzimología , Ubiquitinas/química , Ubiquitinas/metabolismo , Proteínas Virales/química , Proteínas Virales/metabolismo , Calorimetría , Proteasas 3C de Coronavirus , Cristalografía por Rayos X , Enzimas Desubicuitinizantes/metabolismo , Interacciones Huésped-Patógeno , Humanos , Interferones/antagonistas & inhibidores , Coronavirus del Síndrome Respiratorio de Oriente Medio/genética , Coronavirus del Síndrome Respiratorio de Oriente Medio/metabolismo , Coronavirus del Síndrome Respiratorio de Oriente Medio/patogenicidad , Mutación , Ubiquitina/metabolismo
8.
Chem Res Toxicol ; 31(12): 1405-1417, 2018 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-30462502

RESUMEN

Over 50 years ago, the toxicity of irreversible organophosphate inhibitors targeting human acetylcholinesterase (hAChE) was observed to be stereospecific. The therapeutic reversal of hAChE inhibition by reactivators has also been shown to depend on the stereochemistry of the inhibitor. To gain clarity on the mechanism of stereospecific inhibition, the X-ray crystallographic structures of hAChE inhibited by a racemic mixture of VX (P R/S) and its enantiomers were obtained. Beyond identifying hAChE structural features that lend themselves to stereospecific inhibition, structures of the reactivator HI-6 bound to hAChE inhibited by VX enantiomers of varying toxicity, or in its uninhibited state, were obtained. Comparison of hAChE in these pre-reactivation and post-reactivation states along with enzymatic data reveals the potential influence of unproductive reactivator poses on the efficacy of these types of therapeutics. The recognition of structural features related to hAChE's stereospecificity toward VX shed light on the molecular influences of toxicity and their effect on reactivators. In addition to providing a better understanding of the innate issues with current reactivators, an avenue for improvement of reactivators is envisioned.


Asunto(s)
Acetilcolinesterasa/química , Reactivadores de la Colinesterasa/química , Compuestos Organotiofosforados/química , Oximas/química , Compuestos de Piridinio/química , Acetilcolinesterasa/genética , Acetilcolinesterasa/metabolismo , Sitios de Unión , Biocatálisis , Dominio Catalítico , Reactivadores de la Colinesterasa/metabolismo , Cristalografía por Rayos X , Humanos , Simulación de Dinámica Molecular , Compuestos Organotiofosforados/metabolismo , Oximas/metabolismo , Compuestos de Piridinio/metabolismo , Proteínas Recombinantes/biosíntesis , Proteínas Recombinantes/química , Proteínas Recombinantes/aislamiento & purificación , Estereoisomerismo
9.
Biochemistry ; 54(41): 6423-33, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26418828

RESUMEN

The enzyme organophosphorus acid anhydrolase (OPAA), from Alteromonas sp. JD6.5, has been shown to rapidly catalyze the hydrolysis of a number of toxic organophosphorus compounds, including several G-type chemical nerve agents. The enzyme was cloned into Escherichia coli and can be produced up to approximately 50% of cellular protein. There have been no previous reports of OPAA activity on VR {Russian VX, O-isobutyl S-[2-(diethylamino)ethyl] methylphosphonothioate}, and our studies reported here show that wild-type OPAA has poor catalytic efficacy toward VR. However, via application of a structurally aided protein engineering approach, significant improvements in catalytic efficiency were realized via optimization of the small pocket within the OPAA's substrate-binding site. This optimization involved alterations at only three amino acid sites resulting in a 30-fold increase in catalytic efficiency toward racemic VR, with a strong stereospecificity toward the P(+) enantiomer. X-ray structures of this mutant as well as one of its predecessors provide potential structural rationales for their effect on the OPAA active site. Additionally, a fourth mutation at a site near the small pocket was found to relax the stereospecificity of the OPAA enzyme. Thus, it allows the altered enzyme to effectively process both VR enantiomers and should be a useful genetic background in which to seek further improvements in OPAA VR activity.


Asunto(s)
Alteromonas/enzimología , Alteromonas/genética , Arildialquilfosfatasa/genética , Arildialquilfosfatasa/metabolismo , Compuestos Organotiofosforados/metabolismo , Alteromonas/química , Alteromonas/metabolismo , Arildialquilfosfatasa/química , Dominio Catalítico , Clonación Molecular , Cristalografía por Rayos X , Escherichia coli/genética , Hidrólisis , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Conformación Proteica , Ingeniería de Proteínas , Estereoisomerismo , Especificidad por Sustrato
10.
Biochemistry ; 53(48): 7604-14, 2014 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-25390935

RESUMEN

Staphylococcus aureus is one of the most common nosocomial sources of soft-tissue and skin infections and has more recently become prevalent in the community setting as well. Since the use of penicillins to combat S. aureus infections in the 1940s, the bacterium has been notorious for developing resistances to antibiotics, such as methicillin-resistant Staphylococcus aureus (MRSA). With the persistence of MRSA as well as many other drug resistant bacteria and parasites, there is a growing need to focus on new pharmacological targets. Recently, class II fructose 1,6-bisphosphate aldolases (FBAs) have garnered attention to fill this role. Regrettably, scarce biochemical data and no structural data are currently available for the class II FBA found in MRSA (SaFBA). With the recent finding of a flexible active site zinc-binding loop (Z-Loop) in class IIa FBAs and its potential for broad spectrum class II FBA inhibition, the lack of information regarding this feature of class IIb FBAs, such as SaFBA, has been limiting for further Z-loop inhibitor development. Therefore, we elucidated the crystal structure of SaFBA to 2.1 Å allowing for a more direct structural analysis of SaFBA. Furthermore, we determined the KM for one of SaFBA's substrates, fructose 1,6-bisphosphate, as well as performed mode of inhibition studies for an inhibitor that takes advantage of the Z-loop's flexibility. Together the data offers insight into a class IIb FBA from a pervasively drug resistant bacterium and a comparison of Z-loops and other features between the different subtypes of class II FBAs.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Fructosa-Bifosfato Aldolasa/química , Fructosa-Bifosfato Aldolasa/metabolismo , Staphylococcus aureus Resistente a Meticilina/enzimología , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Dominio Catalítico , Cristalografía por Rayos X , Fructosa-Bifosfato Aldolasa/genética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Staphylococcus aureus Resistente a Meticilina/genética , Modelos Moleculares , Datos de Secuencia Molecular , Conformación Proteica , Estructura Secundaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología de Secuencia de Aminoácido , Especificidad por Sustrato
11.
Biochemistry ; 53(1): 202-13, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24325645

RESUMEN

Class II fructose 1,6-bisphosphate aldolase (FBA) is an enzyme critical for bacterial, fungal, and protozoan glycolysis/gluconeogenesis. Importantly, humans lack this type of aldolase, having instead a class I FBA that is structurally and mechanistically distinct from class II FBAs. As such, class II FBA is considered a putative pharmacological target for the development of novel antibiotics against pathogenic bacteria such as Mycobacterium tuberculosis, the causative agent for tuberculosis (TB). To date, several competitive class II FBA substrate mimic-styled inhibitors have been developed; however, they lack either specificity, potency, or properties that limit their potential as possible therapeutics. Recently, through the use of enzymatic and structure-based assisted screening, we identified 8-hydroxyquinoline carboxylic acid (HCA) that has an IC50 of 10 ± 1 µM for the class II FBA present in M. tuberculosis (MtFBA). As opposed to previous inhibitors, HCA behaves in a noncompetitive manner, shows no inhibitory properties toward human and rabbit class I FBAs, and possesses anti-TB properties. Furthermore, we were able to determine the crystal structure of HCA bound to MtFBA to 2.1 Å. HCA also demonstrates inhibitory effects for other class II FBAs, including pathogenic bacteria such as methicillin-resistant Staphylococcus aureus. With its broad-spectrum potential, unique inhibitory characteristics, and flexibility of functionalization, the HCA scaffold likely represents an important advancement in the development of class II FBA inhibitors that can serve as viable preclinical candidates.


Asunto(s)
Fructosa-Bifosfato Aldolasa/antagonistas & inhibidores , Hidroxiquinolinas/farmacología , Mycobacterium tuberculosis/enzimología , Secuencia de Aminoácidos , Animales , Calorimetría , Dominio Catalítico , Cristalografía por Rayos X , Cinética , Staphylococcus aureus Resistente a Meticilina/efectos de los fármacos , Modelos Moleculares , Conejos , Alineación de Secuencia
12.
Biochemistry ; 53(21): 3486-501, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24825099

RESUMEN

Two mutations of the phosphodianion gripper loop in chicken muscle triosephosphate isomerase (cTIM) were examined: (1) the loop deletion mutant (LDM) formed by removal of residues 170-173 [Pompliano, D. L., et al. (1990) Biochemistry 29, 3186-3194] and (2) the loop 6 replacement mutant (L6RM), in which the N-terminal hinge sequence of TIM from eukaryotes, 166-PXW-168 (X = L or V), is replaced by the sequence from archaea, 166-PPE-168. The X-ray crystal structure of the L6RM shows a large displacement of the side chain of E168 from that for W168 in wild-type cTIM. Solution nuclear magnetic resonance data show that the L6RM results in significant chemical shift changes in loop 6 and surrounding regions, and that the binding of glycerol 3-phosphate (G3P) results in chemical shift changes for nuclei at the active site of the L6RM that are smaller than those of wild-type cTIM. Interactions with loop 6 of the L6RM stabilize the enediolate intermediate toward the elimination reaction catalyzed by the LDM. The LDM and L6RM result in 800000- and 23000-fold decreases, respectively, in kcat/Km for isomerization of GAP. Saturation of the LDM, but not the L6RM, by substrate and inhibitor phosphoglycolate is detected by steady-state kinetic analyses. We propose, on the basis of a comparison of X-ray crystal structures for wild-type TIM and the L6RM, that ligands bind weakly to the L6RM because a large fraction of the ligand binding energy is utilized to overcome destabilizing electrostatic interactions between the side chains of E168 and E129 that are predicted to develop in the loop-closed enzyme. Similar normalized yields of DHAP, d-DHAP, and d-GAP are formed in LDM- and L6RM-catalyzed reactions of GAP in D2O. The smaller normalized 12-13% yield of DHAP and d-DHAP observed for the mutant cTIM-catalyzed reactions compared with the 79% yield of these products for wild-type cTIM suggests that these mutations impair the transfer of a proton from O-2 to O-1 at the initial enediolate phosphate intermediate. No products are detected for the LDM-catalyzed isomerization reactions in D2O of [1-(13)C]GA and HPi, but the L6RM-catalyzed reaction in the presence of 0.020 M dianion gives a 2% yield of the isomerization product [2-(13)C,2-(2)H]GA.


Asunto(s)
Gliceraldehído-3-Fosfato Deshidrogenasas/química , Animales , Proteínas Arqueales/química , Proteínas Arqueales/genética , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biocatálisis , Cristalografía por Rayos X , Dihidroxiacetona Fosfato/química , Gliceraldehído 3-Fosfato/química , Gliceraldehído-3-Fosfato Deshidrogenasas/antagonistas & inhibidores , Gliceraldehído-3-Fosfato Deshidrogenasas/genética , Glicerofosfatos/química , Isomerismo , Cinética , Modelos Moleculares , Mutación , Resonancia Magnética Nuclear Biomolecular , Conformación Proteica , Conejos , Eliminación de Secuencia
13.
J Virol ; 87(7): 3815-27, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23345508

RESUMEN

Nairoviruses are responsible for numerous diseases that affect both humans and animal. Recent work has implicated the viral ovarian tumor domain (vOTU) as a possible nairovirus virulence factor due to its ability to edit ubiquitin (Ub) bound to cellular proteins and, at least in the case of Crimean-Congo hemorrhagic fever virus (CCHFV), to cleave the Ub-like protein interferon-stimulated gene 15 (ISG15), a protein involved in the regulation of host immunity. The prospective roles of vOTUs in immune evasion have generated several questions concerning whether vOTUs act through a preserved specificity for Ub- and ISG15-conjugated proteins and where that specificity may originate. To gain insight into the substrate specificity of vOTUs, enzymological studies were conducted on vOTUs from Dugbe, CCHFV, and Erve nairoviruses. These studies revealed that vOTUs originating from different nairoviruses display a significant divergence in their preference toward Ub and ISG15. In addition, a recently identified vOTU from turnip yellow mosaic tymovirus was evaluated to elucidate any possible similarities between vOTUs originating from different viral families. Although possessing a similar preference for certain polymeric Ub moieties, its activity toward Ub in general was significantly less then those of nairoviruses. Lastly, the X-ray crystallographic structure of the vOTU from the Dugbe nairovirus was obtained in complex with Ub to reveal structural commonalities of vOTUs originating from nairoviruses. The structure suggests that divergences between nairovirus vOTUs specificity originate at the primary structural level. Comparison of this structure to that originating from CCHFV identified key residues that infer the substrate specificity of vOTUs.


Asunto(s)
Citocinas/metabolismo , Modelos Moleculares , Nairovirus/enzimología , Péptido Hidrolasas/metabolismo , Ubiquitina/metabolismo , Ubiquitinas/metabolismo , Proteínas Virales/metabolismo , Factores de Virulencia/metabolismo , Secuencia de Aminoácidos , Cristalografía por Rayos X , Ensayo de Cambio de Movilidad Electroforética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Nairovirus/metabolismo , Nairovirus/patogenicidad , Péptido Hidrolasas/química , Péptido Hidrolasas/genética , Conformación Proteica , Alineación de Secuencia , Especificidad de la Especie , Especificidad por Sustrato , Proteínas Virales/química , Factores de Virulencia/química
14.
Virus Res ; 345: 199398, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38754786

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is a tick-borne nairovirus with a wide geographic spread that can cause severe and lethal disease. No specific medical countermeasures are approved to combat this illness. The CCHFV L protein contains an ovarian tumor (OTU) domain with a cysteine protease thought to modulate cellular immune responses by removing ubiquitin and ISG15 post-translational modifications from host and viral proteins. Viral deubiquitinases like CCHFV OTU are attractive drug targets, as blocking their activity may enhance cellular immune responses to infection, and potentially inhibit viral replication itself. We previously demonstrated that the engineered ubiquitin variant CC4 is a potent inhibitor of CCHFV replication in vitro. A major challenge of the therapeutic use of small protein inhibitors such as CC4 is their requirement for intracellular delivery, e.g., by viral vectors. In this study, we examined the feasibility of in vivo CC4 delivery by a replication-deficient recombinant adenovirus (Ad-CC4) in a lethal CCHFV mouse model. Since the liver is a primary target of CCHFV infection, we aimed to optimize delivery to this organ by comparing intravenous (tail vein) and intraperitoneal injection of Ad-CC4. While tail vein injection is a traditional route for adenovirus delivery, in our hands intraperitoneal injection resulted in higher and more widespread levels of adenovirus genome in tissues, including, as intended, the liver. However, despite promising in vitro results, neither route of in vivo CC4 treatment resulted in protection from a lethal CCHFV infection.


Asunto(s)
Adenoviridae , Modelos Animales de Enfermedad , Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Replicación Viral , Animales , Virus de la Fiebre Hemorrágica de Crimea-Congo/genética , Fiebre Hemorrágica de Crimea/virología , Ratones , Adenoviridae/genética , Proteínas Virales/genética , Proteínas Virales/metabolismo , Vectores Genéticos/genética , Antivirales/farmacología , Femenino , Hígado/virología , Humanos
15.
Nat Commun ; 15(1): 1722, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409240

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) is a WHO priority pathogen. Antibody-based medical countermeasures offer an important strategy to mitigate severe disease caused by CCHFV. Most efforts have focused on targeting the viral glycoproteins. However, glycoproteins are poorly conserved among viral strains. The CCHFV nucleocapsid protein (NP) is highly conserved between CCHFV strains. Here, we investigate the protective efficacy of a CCHFV monoclonal antibody targeting the NP. We find that an anti-NP monoclonal antibody (mAb-9D5) protected female mice against lethal CCHFV infection or resulted in a significant delay in mean time-to-death in mice that succumbed to disease compared to isotype control animals. Antibody protection is independent of Fc-receptor functionality and complement activity. The antibody bound NP from several CCHFV strains and exhibited robust cross-protection against the heterologous CCHFV strain Afg09-2990. Our work demonstrates that the NP is a viable target for antibody-based therapeutics, providing another direction for developing immunotherapeutics against CCHFV.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo , Fiebre Hemorrágica de Crimea , Femenino , Animales , Ratones , Virus de la Fiebre Hemorrágica de Crimea-Congo/metabolismo , Proteínas de la Nucleocápside/metabolismo , Anticuerpos Monoclonales , Fiebre Hemorrágica de Crimea/prevención & control , Glicoproteínas/metabolismo , Anticuerpos Antivirales
16.
NPJ Vaccines ; 9(1): 88, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38782933

RESUMEN

Crimean-Congo hemorrhagic fever virus (CCHFV) can cause severe human disease and is considered a WHO priority pathogen due to the lack of efficacious vaccines and antivirals. A CCHF virus replicon particle (VRP) has previously shown protective efficacy in a lethal Ifnar-/- mouse model when administered as a single dose at least 3 days prior to challenge. Here, we determine that non-specific immune responses are not sufficient to confer short-term protection, since Lassa virus VRP vaccination 3 days prior to CCHFV challenge was not protective. We also investigate how CCHF VRP vaccination confers protective efficacy by examining viral kinetics, histopathology, clinical analytes and immunity early after challenge (3 and 6 days post infection) and compare to unvaccinated controls. We characterize how these effects differ based on vaccination period and correspond to previously reported CCHF VRP-mediated protection. Vaccinating Ifnar-/- mice with CCHF VRP 28, 14, 7, or 3 days prior to challenge, all known to confer complete protection, significantly reduced CCHFV viral load, mucosal shedding, and markers of clinical disease, with greater reductions associated with longer vaccination periods. Interestingly, there were no significant differences in innate immune responses, T cell activation, or antibody titers after challenge between groups of mice vaccinated a week or more before challenge, but higher anti-NP antibody avidity and effector function (ADCD) were positively associated with longer vaccination periods. These findings support the importance of antibody-mediated responses in VRP vaccine-mediated protection against CCHFV infection.

17.
Biochemistry ; 52(5): 912-25, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23298222

RESUMEN

Class II fructose 1,6-bisphosphate aldolases (FBAs, EC 4.1.2.13) comprise one of two families of aldolases. Instead of forming a Schiff base intermediate using an ε-amino group of a lysine side chain, class II FBAs utilize Zn(II) to stabilize a proposed hydroxyenolate intermediate (HEI) in the reversible cleavage of fructose 1,6-bisphosphate, forming glyceraldehyde 3-phosphate and dihydroxyacetone phosphate (DHAP). As class II FBAs have been shown to be essential in pathogenic bacteria, focus has been placed on these enzymes as potential antibacterial targets. Although structural studies of class II FBAs from Mycobacterium tuberculosis (MtFBA), other bacteria, and protozoa have been reported, the structure of the active site loop responsible for catalyzing the protonation-deprotonation steps of the reaction for class II FBAs has not yet been observed. We therefore utilized the potent class II FBA inhibitor phosphoglycolohydroxamate (PGH) as a mimic of the HEI- and DHAP-bound form of the enzyme and determined the X-ray structure of the MtFBA-PGH complex to 1.58 Å. Remarkably, we are able to observe well-defined electron density for the previously elusive active site loop of MtFBA trapped in a catalytically competent orientation. Utilization of this structural information and site-directed mutagenesis and kinetic studies conducted on a series of residues within the active site loop revealed that E169 facilitates a water-mediated deprotonation-protonation step of the MtFBA reaction mechanism. Also, solvent isotope effects on MtFBA and catalytically relevant mutants were used to probe the effect of loop flexibility on catalytic efficiency. Additionally, we also reveal the structure of MtFBA in its holoenzyme form.


Asunto(s)
Fructosa-Bifosfato Aldolasa/química , Fructosa-Bifosfato Aldolasa/metabolismo , Mycobacterium tuberculosis/enzimología , Secuencia de Aminoácidos , Dominio Catalítico , Dihidroxiacetona Fosfato/metabolismo , Fructosa-Bifosfato Aldolasa/antagonistas & inhibidores , Fructosa-Bifosfato Aldolasa/genética , Ácidos Hidroxámicos/metabolismo , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mycobacterium tuberculosis/química , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/metabolismo , Unión Proteica , Alineación de Secuencia , Especificidad por Sustrato
18.
J Med Chem ; 66(12): 8159-8169, 2023 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-37262387

RESUMEN

We have recently reported on the use of aryl-fluorosulfates in designing water- and plasma-stable agents that covalently target Lys, Tyr, or His residues in the BIR3 domain of the inhibitor of the apoptosis protein (IAP) family. Here, we report further structural, cellular, and pharmacological characterizations of this agent, including the high-resolution structure of the complex between the Lys-covalent agent and its target, the BIR3 domain of X-linked IAP (XIAP). We also compared the cellular efficacy of the agent in two-dimensional (2D) and three-dimensional (3D) cell cultures, side by side with the clinical candidate reversible IAP inhibitor LCL161. Finally, in vivo pharmacokinetic studies indicated that the agent was long-lived and orally bioavailable. Collectively our data further corroborate that aryl-fluorosulfates, when incorporated correctly in a ligand, can result in Lys-covalent agents with pharmacodynamic and pharmacokinetic properties that warrant their use in the design of pharmacological probes or even therapeutics.


Asunto(s)
Proteínas Inhibidoras de la Apoptosis , Proteína Inhibidora de la Apoptosis Ligada a X , Unión Proteica , Proteína Inhibidora de la Apoptosis Ligada a X/metabolismo , Apoptosis
19.
Biochemistry ; 51(33): 6701-13, 2012 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-22812634

RESUMEN

Adenylosuccinate lyase (ADSL) deficiency is a rare autosomal recessive disorder, which causes a defect in purine metabolism resulting in neurological and physiological symptoms. ADSL executes two nonsequential steps in the de novo synthesis of AMP: the conversion of phosphoribosylsuccinyl-aminoimidazole carboxamide (SAICAR) to phosphoribosylaminoimidazole carboxamide, which occurs in the de novo synthesis of IMP, and the conversion of adenylosuccinate to AMP, which occurs in the de novo synthesis of AMP and also in the purine nucleotide cycle, using the same active site. Mutation of ADSL's arginine 303 to a cysteine is known to lead to ADSL deficiency. Interestingly, unlike other mutations leading to ADSL deficiency, the R303C mutation has been suggested to more significantly affect the enzyme's ability to catalyze the conversion of succinyladenosine monophosphate than that of SAICAR to their respective products. To better understand the causation of disease due to the R303C mutation, as well as to gain insights into why the R303C mutation potentially has a disproportional decrease in activity toward its substrates, the wild type (WT) and the R303C mutant of ADSL were investigated enzymatically and thermodynamically. Additionally, the X-ray structures of ADSL in its apo form as well as with the R303C mutation were elucidated, providing insight into ADSL's cooperativity. By utilizing this information, a model for the interaction between ADSL and SAICAR is proposed.


Asunto(s)
Adenilosuccinato Liasa/química , Errores Innatos del Metabolismo de la Purina-Pirimidina/genética , Adenosina Monofosfato/análogos & derivados , Adenosina Monofosfato/metabolismo , Adenilosuccinato Liasa/deficiencia , Adenilosuccinato Liasa/genética , Adenilosuccinato Liasa/metabolismo , Secuencia de Aminoácidos , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Trastorno Autístico , Humanos , Mutación Missense , Ribonucleótidos/metabolismo , Alineación de Secuencia
20.
J Virol ; 85(7): 3621-30, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21228232

RESUMEN

Crimean-Congo hemorrhagic fever (CCHF) virus is a tick-borne, negative-sense, single-stranded RNA [ssRNA(-)] nairovirus that produces fever, prostration, and severe hemorrhages in humans. With fatality rates for CCHF ranging up to 70% based on several factors, CCHF is considered a dangerous emerging disease. Originally identified in the former Soviet Union and the Congo, CCHF has rapidly spread across large sections of Europe, Asia, and Africa. Recent reports have identified a viral homologue of the ovarian tumor protease superfamily (vOTU) within its L protein. This protease has subsequently been implicated in downregulation of the type I interferon immune response through cleavage of posttranslational modifying proteins ubiquitin (Ub) and the Ub-like interferon-simulated gene 15 (ISG15). Additionally, homologues of vOTU have been suggested to perform similar roles in the positive-sense, single-stranded RNA [ssRNA(+)] arteriviruses. By utilizing X-ray crystallographic techniques, the structure of vOTU covalently bound to ubiquitin propylamine, a suicide substrate of the enzyme, was elucidated to 1.7 Å, revealing unique structural elements that define this new subclass of the OTU superfamily. In addition, kinetic studies were carried out with aminomethylcoumarin (AMC) conjugates of monomeric Ub, ISG15, and NEDD8 (neural precursor cell expressed, developmentally downregulated 8) substrates in order to provide quantitative insights into vOTU's preference for Ub and Ub-like substrates.


Asunto(s)
Virus de la Fiebre Hemorrágica de Crimea-Congo/química , Virus de la Fiebre Hemorrágica de Crimea-Congo/enzimología , Péptido Hidrolasas/química , Ubiquitina/química , Proteínas Virales/química , Secuencia de Aminoácidos , Cristalografía por Rayos X , Cinética , Modelos Moleculares , Datos de Secuencia Molecular , Péptido Hidrolasas/metabolismo , Unión Proteica , Estructura Cuaternaria de Proteína , Homología de Secuencia de Aminoácido , Ubiquitina/metabolismo , Proteínas Virales/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda