Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Biosci Rep ; 41(4)2021 04 30.
Artículo en Inglés | MEDLINE | ID: mdl-33760064

RESUMEN

High-risk human papillomavirus (hrHPVs), particularly HPV16 and HPV18, are the etiologic factors of ano-genital cancers and some head and neck squamous cell carcinomas (HNSCCs). Viral E6 and E7 oncoproteins, controlled at both transcriptional and post-transcriptional levels, drive hrHPVs-induced carcinogenesis. In the present study, we investigated the implication of the DEAD-box helicase eukaryotic translation initiation factor 4A3 (eIF4A3,) an Exon Junction Complex factor, in the regulation of HPV16 gene expression. Our data revealed that the depletion of the factor eIF4A3 up-regulated E7 oncoprotein levels. We also showed that the inhibition of the nonsense-mediated RNA decay (NMD) pathway, resulted in the up-regulation of E7 at both RNA and protein levels. We therefore proposed that HPV16 transcripts might present different susceptibilities to NMD and that this pathway could play a key role in the levels of expression of these viral oncoproteins during the development of HPV-related cancers.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Proteínas E7 de Papillomavirus/genética , Línea Celular Tumoral , Interacciones Huésped-Patógeno , Papillomavirus Humano 16/genética , Papillomavirus Humano 16/metabolismo , Humanos , Proteínas E7 de Papillomavirus/metabolismo
2.
Biomedicines ; 9(10)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34680418

RESUMEN

EMT is a reversible cellular process that is linked to gene expression reprogramming, which allows for epithelial cells to undergo a phenotypic switch to acquire mesenchymal properties. EMT is associated with cancer progression and cancer therapeutic resistance and it is known that, during the EMT, many stress response pathways, such as autophagy and NMD, are dysregulated. Therefore, our goal was to study the regulation of ATG8 family members (GABARAP, GABARAPL1, LC3B) by the NMD and to identify molecular links between these two cellular processes that are involved in tumor development and metastasis formation. IHC experiments, which were conducted in a cohort of patients presenting lung adenocarcinomas, showed high GABARAPL1 and low UPF1 levels in EMT+ tumors. We observed increased levels of GABARAPL1 correlated with decreased levels of NMD factors in A549 cells in vitro. We then confirmed that GABARAPL1 mRNA was indeed targeted by the NMD in a 3'UTR-dependent manner and we identified four overlapping binding sites for UPF1 and eIF4A3 that are potentially involved in the recognition of this transcript by the NMD pathway. Our study suggests that 3'UTR-dependent NMD might be an important mechanism that is involved in the induction of autophagy and could represent a promising target in the development of new anti-cancer therapies.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda