RESUMEN
Recent evidence has implicated complement component (C) 4A in excessive elimination of synapses in schizophrenia. C4A is believed to contribute to physiological synapse removal through signaling within the C1q initiated classical activation axis of the complement system. So far, a potential involvement of C1q in the pathophysiology of schizophrenia remains unclear. In this study, we first utilized large-scale gene expression datasets (n = 586 patients with schizophrenia and n = 986 controls) to observe lower C1QA mRNA expression in prefrontal cortex tissue of individuals with schizophrenia (P = 4.8x10-05), while C1QA seeded co-expression networks displayed no enrichment for schizophrenia risk variants beyond C4A. We then used targeted liquid chromatography-mass spectrometry (LS-MS) to measure cerebrospinal fluid (CSF) levels of C1qA in 113 individuals with first-episode psychosis (FEP), among which 66 individuals was later diagnosed with schizophrenia, and 87 healthy controls. CSF concentrations of C1qA were lower in individuals diagnosed with FEP (P = 0.0001), also after removing subjects with a short-term prescription of an antipsychotic agent (P = 0.0005). We conclude that C1q mRNA and protein levels are lower in schizophrenia and that further experimental studies are needed to understand the functional implications.
Asunto(s)
Antipsicóticos , Trastornos Psicóticos , Esquizofrenia , Humanos , Complemento C1q , Antipsicóticos/uso terapéutico , ARN MensajeroRESUMEN
The pathophysiology of bipolar disorder remains to be elucidated and there are no diagnostic or prognostic biomarkers for the condition. In this explorative proteomic study, we analyzed 201 proteins in cerebrospinal fluid (CSF) from mood stable bipolar disorder patients and control subjects sampled from two independent cohorts, amounting to a total of 204 patients and 144 controls. We used three Olink Multiplex panels, whereof one specifically targets immune biomarkers, to assess a broad set of CSF protein concentrations. After quality control and removal of proteins with a low detection rate, 105 proteins remained for analyses in relation to case-control status and clinical variables. Only case-control differences that replicated across cohorts were considered. Results adjusted for potential confounders showed that CSF concentrations of growth hormone were lower in bipolar disorder compared with controls in both cohorts. The effect size was larger when the analysis was restricted to bipolar disorder type 1 and controls. We found no indications of immune activation or other aberrations. Growth hormone exerts many effects in the central nervous system and our findings suggest that growth hormone might be implicated in the pathophysiology of bipolar disorder.
Asunto(s)
Trastorno Bipolar , Humanos , Trastorno Bipolar/metabolismo , Proteómica , Biomarcadores/líquido cefalorraquídeo , Hormona del CrecimientoRESUMEN
The etiopathology of bipolar disorder is largely unknown. We collected cerebrospinal fluid (CSF) samples from two independent case-control cohorts (total n = 351) to identify proteins associated with bipolar disorder. A panel of 92 proteins targeted towards central nervous system processes identified two proteins that replicated across the cohorts: the CSF concentrations of testican-1 were lower, and the CSF concentrations of C-type lectin domain family 1 member B (CLEC1B) were higher, in cases than controls. In a restricted subgroup analysis, we compared only bipolar type 1 with controls and identified two additional proteins that replicated in both cohorts: draxin and tumor necrosis factor receptor superfamily member 21 (TNFRSF21), both lower in cases than controls. This analysis additionally revealed several proteins significantly associated with bipolar type 1 in one cohort, falling just short of replicated statistical significance in the other (tenascin-R, disintegrin and metalloproteinase domain-containing protein 23, cell adhesion molecule 3, RGM domain family member B, plexin-B1, and brorin). Next, we conducted genome-wide association analyses of the case-control-associated proteins. In these analyses, we found associations with the voltage-gated calcium channel subunit CACNG4, and the lipid-droplet-associated gene PLIN5 with CSF concentrations of TNFRSF21 and CLEC1B, respectively. The reported proteins are involved in neuronal cell-cell and cell-matrix interactions, particularly in the developing brain, and in pathways of importance for lithium's mechanism of action. In summary, we report four novel CSF protein associations with bipolar disorder that replicated in two independent case-control cohorts, shedding new light on the central nervous system processes implicated in bipolar disorder.
Asunto(s)
Trastorno Bipolar , Trastorno Bipolar/genética , Estudios de Casos y Controles , Sistema Nervioso Central/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , ProteómicaRESUMEN
OBJECTIVE: To study changes of neuropeptides and adipokines in cerebrospinal fluid (CSF) and serum from pregnancy to postpregnancy in relation to weight changes, fat mass and glucose metabolism. CONTEXT: With high postpartum weight retention being a risk factor in future pregnancies and of lifelong obesity, we evaluated neuropeptide and adipokine changes in women who either gained weight or were weight stable. DESIGN: Women were followed for 5 ± 1 years after pregnancy and divided into two groups, weight stable and weight gain, by weight change from start of pregnancy. PATIENTS: Twenty-five women (BMI 27 ± 5 kg/m2 ) recruited at admission for elective caesarean section. MEASUREMENTS: CSF and serum levels of agouti-related protein (AgRP), leptin and insulin, and serum levels of adiponectin and soluble leptin receptor were measured during and after pregnancy. These measurements were further related to fat mass and insulin sensitivity (HOMA-IR). RESULTS: S-AgRP levels during pregnancy were lower in the weight stable group and a 1 unit increase in s-AgRP was associated with 24% higher odds of pertaining to the weight gain group. After pregnancy, s-AgRP increased in the weight stable group but decreased in the weight gain group. Decreased transport of leptin into CSF during pregnancy was reversed by an increased CSF:serum leptin ratio after pregnancy. In women who returned to their prepregnancy weight, serum adiponectin increased after pregnancy and correlated negatively with HOMA-IR. CONCLUSION: S-AgRP concentration in late pregnancy may be one factor predicting weight change after pregnancy, and circulating AgRP may be physiologically important in the long-term regulation of body weight.
Asunto(s)
Proteína Relacionada con Agouti/sangre , Leptina/sangre , Adiponectina/sangre , Adulto , Peso Corporal/fisiología , Femenino , Humanos , Insulina/sangre , Embarazo , Receptores de Leptina/sangreRESUMEN
Alterations in monoaminergic signaling are suggested as key aspects of the pathophysiology in bipolar disorder and ADHD, but it is not known if the monoamine metabolic profile differs between these disorders. One method to study monoaminergic systems in humans is to measure monoamine end-point metabolite concentrations in cerebrospinal fluid (CSF). Here, we analyzed CSF monoamine metabolite concentrations in 103 adults with bipolar disorder, 72 adults with ADHD, and 113 controls. Individuals with bipolar disorder had significantly higher homovanillic acid (HVA, 264 ± 112 nmol/L, p < 0.001) and 5-hydroxyindoleacetic acid (5-HIAA, 116 ± 42 nmol/L, p = 0.001) concentration, but lower 3-methoxy-4-hydroxyphenylethyleneglycol (MHPG, 38 ± 8 nmol/L, p < 0.001) concentrations than controls (HVA, 206 ± 70 nmol/L; 5-HIAA, 98 ± 31 nmol/L; and MHPG, 42 ± 7 nmol/L). Higher HVA concentrations were associated with a history of psychosis in the bipolar disorder sample. Subjects with ADHD had higher HVA (240 ± 94 nmol/L, p < 0.001) concentrations compared with controls. In addition, SSRI treatment was associated with lower 5-HIAA concentrations in both patient groups. A power analysis indicated that for within-group comparisons, only large effects would be reliably detectable. Thus, there may be moderate-to-small effects caused by medication that were not detected due to the limited size of the sub-groups in these analyses. In conclusion, the present study suggests disorder-specific alterations of CSF monoamine metabolite concentrations in patients with bipolar disorder and ADHD compared with controls; these differences were independent of acute symptoms and medication effects.
Asunto(s)
Trastorno por Déficit de Atención con Hiperactividad/líquido cefalorraquídeo , Monoaminas Biogénicas/metabolismo , Trastorno Bipolar/líquido cefalorraquídeo , Adulto , Trastorno por Déficit de Atención con Hiperactividad/tratamiento farmacológico , Biomarcadores/líquido cefalorraquídeo , Trastorno Bipolar/tratamiento farmacológico , Femenino , Humanos , Masculino , Inhibidores Selectivos de la Recaptación de Serotonina/uso terapéuticoRESUMEN
Postsynaptic density is reduced in schizophrenia, and risk variants increasing complement component 4A (C4A) gene expression are linked to excessive synapse elimination. In two independent cohorts, we show that cerebrospinal fluid (CSF) C4A concentration is elevated in patients with first-episode psychosis (FEP) who develop schizophrenia (FEP-SCZ: median 0.41 fmol/ul [CI = 0.34-0.45], FEP-non-SCZ: median 0.29 fmol/ul [CI = 0.22-0.35], healthy controls: median 0.28 [CI = 0.24-0.33]). We show that the CSF elevation of C4A in FEP-SCZ exceeds what can be expected from genetic risk variance in the C4 locus, and in patient-derived cellular models we identify a mechanism dependent on the disease-associated cytokines interleukin (IL)-1beta and IL-6 to selectively increase neuronal C4A mRNA expression. In patient-derived CSF, we confirm that IL-1beta correlates with C4A controlled for genetically predicted C4A RNA expression (r = 0.39; CI: 0.01-0.68). These results suggest a role of C4A in early schizophrenia pathophysiology.
Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Humanos , Complemento C4a/genética , Complemento C4a/líquido cefalorraquídeo , Esquizofrenia/genética , Esquizofrenia/metabolismo , Trastornos Psicóticos/genética , Factores de RiesgoRESUMEN
OBJECTIVE: During pregnancy, metabolic interactions must be adapted, though neuroendocrine mechanisms for increased food intake are poorly understood. The objective of this study was to characterize differences in insulin, leptin, and agouti-related protein (AgRP) levels in serum and cerebrospinal fluid (CSF) in pregnant women with normal weight (NW) and pregnant women with overweight (OW) or obesity (OB). Placenta as a source for increased peripheral AgRP levels during pregnancy was also investigated. METHODS: Women were recruited at admission for elective cesarean section. Insulin, AgRP, and leptin were measured in serum and CSF from 30 NW, 25 OW, and 21 OB at term. Serum during pregnancy and placenta at term were collected for further AgRP analysis. RESULTS: Immunohistology showed placental production of AgRP and serum AgRP levels increased throughout pregnancy. CSF AgRP, leptin, and insulin levels were higher in OW and OB than NW. Serum leptin and insulin levels were higher and AgRP lower in OB than NW. CONCLUSIONS: High serum AgRP levels might protect from the suppressive effects of leptin during pregnancy. Pregnant women with OB and OW might further be protected from the suppressive effect of leptin by high CSF AgRP levels. Evidence was found, for the first time, of human placental AgRP production mirrored by levels in the circulation.