Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
Publication year range
1.
Soft Matter ; 10(2): 348-56, 2014 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-24651841

RESUMEN

Using a unique home-made cell for four-contact impedance spectroscopy of conductive liquid samples, we establish the existence of two low frequency conductivity relaxations in aqueous solutions of gelatin, in both liquid and gel states. A comparison with diffusion measurements using pulsed field gradient NMR, and circular dichroism spectroscopy, shows that the faster relaxation process is due to gelatin macromolecule self-diffusion. This single molecule diffusion is mostly insensitive to the macroscopic state of the sample, implying that we have a clear separation of gelatin molecules into a free and network-bound phase. Scaling relationships for the self-diffusion indicate that the gelation process is not a percolative phenomenon, but is caused by aggregation of triple helices into a system-spanning fibre network.


Asunto(s)
Gelatina/química , Espectroscopía Dieléctrica , Difusión , Geles/química , Soluciones , Agua/química
2.
Nat Commun ; 15(1): 7442, 2024 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-39198418

RESUMEN

Quantum materials have a fascinating tendency to manifest novel and unexpected electronic states upon proper manipulation. Ideally, such manipulation should induce strong and irreversible changes and lead to new relevant length scales. Plastic deformation introduces large numbers of dislocations into a material, which can organize into extended structures and give rise to qualitatively new physics as a result of the huge localized strains. However, this approach is largely unexplored in the context of quantum materials, which are traditionally grown to be as pristine and clean as possible. Here we show that plastic deformation induces robust magnetism in the quantum paraelectric SrTiO3, a property that is completely absent in the pristine material. We combine scanning magnetic measurements and near-field optical microscopy to find that the magnetic order is localized along dislocation walls and coexists with ferroelectric order along the walls. The magnetic signals can be switched on and off via external stress and altered by external electric fields, which demonstrates that plastically deformed SrTiO3 is a quantum multiferroic. These results establish plastic deformation as a versatile knob for the manipulation of the electronic properties of quantum materials.

3.
Phys Rev Lett ; 109(9): 095902, 2012 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-23002859

RESUMEN

We present the observation of glasslike dynamic correlations of mobile mercury ions in the ionic conductor Cu2HgI4, detected in both NMR and nonlinear conductivity experiments. The results show that dynamic cooperativity appears in systems seemingly unrelated to glassy and soft arrested materials. A simple kinetic two-component model is proposed, which seems to provide a good description of the cooperative ionic dynamics.

4.
Nat Commun ; 9(1): 4327, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30337539

RESUMEN

A pivotal step toward understanding unconventional superconductors would be to decipher how superconductivity emerges from the unusual normal state. In the cuprates, traces of superconducting pairing appear above the macroscopic transition temperature Tc, yet extensive investigation has led to disparate conclusions. The main difficulty has been to separate superconducting contributions from complex normal-state behaviour. Here we avoid this problem by measuring nonlinear conductivity, an observable that is zero in the normal state. We uncover for several representative cuprates that the nonlinear conductivity vanishes exponentially above Tc, both with temperature and magnetic field, and exhibits temperature-scaling characterized by a universal scale Ξ0. Attempts to model the response with standard Ginzburg-Landau theory are systematically unsuccessful. Instead, our findings are captured by a simple percolation model that also explains other properties of the cuprates. We thus resolve a long-standing conundrum by showing that the superconducting precursor in the cuprates is strongly affected by intrinsic inhomogeneity.

5.
Sci Rep ; 5: 14761, 2015 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-26434597

RESUMEN

The prospect of carbon-based magnetic materials is of immense fundamental and practical importance, and information on atomic-scale features is required for a better understanding of the mechanisms leading to carbon magnetism. Here we report the first direct detection of the microscopic magnetic field produced at (13)C nuclei in a ferromagnetic carbon material by zero-field nuclear magnetic resonance (NMR). Electronic structure calculations carried out in nanosized model systems with different classes of structural defects show a similar range of magnetic field values (18-21 T) for all investigated systems, in agreement with the NMR experiments. Our results are strong evidence of the intrinsic nature of defect-induced magnetism in magnetic carbons and establish the magnitude of the hyperfine magnetic field created in the neighbourhood of the defects that lead to magnetic order in these materials.

6.
Rev Sci Instrum ; 85(7): 073905, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25085150

RESUMEN

We have developed a system for contactless measurement of nonlinear conductivity in the radio-frequency band, and over a wide temperature range. A non-resonant circuit is used to electrically excite the sample, and the induced signal is detected by a resonant circuit whose natural frequency matches higher harmonics of the excitation. A simple modification of the probe allows non-resonant detection suitable for stronger signals. Two measurement procedures are proposed that allow significant excitation power variation, up to 150 W. The apparatus has been validated through the measurement of the nonlinear response at the superconducting transition of a high-Tc superconductor, and the nematic transition of an iron pnictide.

7.
Rev Sci Instrum ; 82(7): 073907, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21806199

RESUMEN

We present an improved approach to the impedance spectroscopy of conductive liquid samples using four-electrode measurements. Our method enables impedance measurements of conductive liquids down to the sub-Hertz frequencies, avoiding the electrode polarization effects that usually cripple standard impedance analysers. We have successfully tested our apparatus with aqueous solutions of potassium chloride and gelatin. The first substance has shown flat spectra from ~100 kHz down to sub-Hz range, while the results on gelatin clearly show the existence of two distinct low frequency conductive relaxations.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda