Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
J Appl Clin Med Phys ; 25(6): e14303, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38377378

RESUMEN

PURPOSE: A workflow/planning strategy delivering low-dose radiation therapy (LDRT) (1 Gy) to all polymetastatic diseases using conventional planning/delivery (Raystation/Halcyon = "conventional") and the AI-based Ethos online adaptive RT (oART) platform is developed/evaluated. METHODS: Using retrospective data for ten polymetastatic non-small cell lung cancer patients (5-52 lesions each) with PET/CTs, gross tumor volumes (GTVs) were delineated using PET standardized-uptake-value (SUV) thresholding. A 1 cm uniform expansion of GTVs to account for setup/contour uncertainty and organ motion-generated planning target volumes (PTVs). Dose optimization/calculation used the diagnostic CT from PET/CT. Dosimetric objectives were: Dmin,0.03cc ≥ 95% (acceptable variation (Δ) ≥ 90%), V100% ≥ 95% (Δ ≥ 90%), and D0.03cc ≤ 120% (Δ ≤ 125%). Additionally, online adaptation was simulated. When available, subsequent diagnostic CT was used to represent on-treatment CBCT. Otherwise, the CT from PET/CT used for initial planning was deformed to simulate clinically representative changes. RESULTS: All initial plans generated, both for Raystation and Ethos, achieved clinical goals within acceptable variation. For all patients, Dmin,0.03cc ≥ 95%, V100% ≥ 95%, and D0.03cc ≤ 120% goals were achieved for 84.8%/99.5%, 97.7%/98.7%, 97.4%/92.3%, in conventional/Ethos plans, respectively. The ratio of 50% isodose volume to PTV volume (R50%), maximum dose at 2 cm from PTV (D2cm), and the ratio of the 100% isodose volume to PTV volume (conformity index) in Raystation/Ethos plans were 7.9/5.9; 102.3%/88.44%; and 0.99/1.01, respectively. In Ethos, online adapted plans maintained PTV coverage whereas scheduled plans often resulted in geographic misses due to changes in tumor size, patient position, and body habitus. The average total duration of the oART workflow was 26:15 (min:sec) ranging from 6:43 to 57:30. The duration of each oART workflow step as a function of a number of targets showed a low correlation coefficient for influencer generation and editing (R2 = 0.04 and 0.02, respectively) and high correlation coefficient for target generation, target editing and plan generation (R2 = 0.68, 0.63 and 0.69, respectively). CONCLUSIONS: This study demonstrates feasibility of conventional planning/treatment with Raystation/Halcyon and highlights efficiency gains when utilizing semi-automated planning/online-adaptive treatment with Ethos for immunostimulatory LDRT conformally delivered to all sites of polymetastatic disease.


Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas , Tomografía Computarizada de Haz Cónico , Estudios de Factibilidad , Neoplasias Pulmonares , Órganos en Riesgo , Tomografía Computarizada por Tomografía de Emisión de Positrones , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Estudios Retrospectivos , Carcinoma de Pulmón de Células no Pequeñas/radioterapia , Carcinoma de Pulmón de Células no Pequeñas/diagnóstico por imagen , Tomografía Computarizada de Haz Cónico/métodos , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Neoplasias Pulmonares/radioterapia , Neoplasias Pulmonares/diagnóstico por imagen , Radioterapia de Intensidad Modulada/métodos , Órganos en Riesgo/efectos de la radiación , Procesamiento de Imagen Asistido por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Pronóstico , Masculino
2.
Acta Oncol ; 61(7): 842-848, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35527717

RESUMEN

PURPOSE: A cluster model incorporating heterogeneous dose distribution within the parotid gland was developed and validated retrospectively for radiotherapy (RT) induced xerostomia prediction with machine learning (ML) techniques. METHODS: Sixty clusters were obtained at 1 Gy step size with threshold doses ranging from 1 to 60 Gy, for each of the enrolled 155 patients with HNC from three institutions. Feature clusters were selected with the neighborhood component analysis (NCA) and subsequently fed into four supervised ML models for xerostomia prediction comparison: support vector machines (SVM), k-nearest neighbor (kNN), naïve Bayes (NB), and random forest (RF). The predictive performance of each model was evaluated using cross validation resampling with the area-under-the-curves (AUC) of the receiver-operating-characteristic (ROC). The xerostomia predicting capacity using testing data was assessed with accuracy, sensitivity, and specificity for these models and three cluster connectivity choices. Mean dose based logistic regression served as the benchmark for evaluation. RESULTS: Feature clusters identified by NCA fell in three threshold dose ranges: 5-15Gy, 25-35Gy, and 45-50Gy. Mean dose predictive power was 15% lower than that of the cluster model using the logistic regression classifier. Model validation demonstrated that kNN model outperformed slightly other three models but no substantial difference was observed. Applying the fine-tuned models to testing data yielded that the mean accuracy from SVM, kNN and NB models were between 0.68 and 0.7 while that of RF was ∼0.6. SVM model yielded the best sensitivity (0.76) and kNN model delivered consistent sensitivity and specificity. This is consistent with cross validation. Clusters calculated with three connectivity choices exhibited minimally different predictions. CONCLUSION: Compared to mean dose, the proposed cluster model has shown its improvement as the xerostomia predictor. When combining with ML techniques, it could provide a clinically useful tool for xerostomia prediction and facilitate decision making during radiotherapy planning for patients with HNC.


Asunto(s)
Glándula Parótida , Xerostomía , Teorema de Bayes , Humanos , Aprendizaje Automático , Glándula Parótida/efectos de la radiación , Estudios Retrospectivos , Xerostomía/diagnóstico , Xerostomía/etiología
3.
Rep Pract Oncol Radiother ; 26(1): 153-158, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34046227

RESUMEN

BACKGROUND: The aim was to demonstrate the feasibility and technique of gonadal sparing total body irradiation (TBI) with helical tomotherapy. Total body irradiation is a common part of the conditioning regimen prior to allogeneic stem cell transplantation. Shielding or dose-reduction to the gonads is often desired to preserve fertility, particularly in young patients undergoing transplant for non-malignant indications. Helical tomotherapy (HT) has been shown to be superior to traditional TBI delivery for organ at risk (OA R) doses and dose homogeneity. MATERIALS AND METHODS: We present two representative cases (one male and one female) to illustrate the feasibility of this technique, each of whom received 3Gy in a single fraction prior to allogeneic stem cell transplant for benign indications. The planning target volume (PTV) included the whole body with a subtraction of OA Rs including the lungs, heart, and brain (each contracted by 1cm) as well as the gonads (testicles expanded by 5 cm and ovaries expanded by 0.5 cm). RESULTS: For the male patient we achieved a homogeneity index of 1.35 with a maximum and median planned dose to the testes of 0.53 Gy and 0.35 Gy, respectively. In-vivo dosimetry demonstrated an actual received dose of 0.48 Gy. For the female patient we achieved a homogeneity index of 1.13 with a maximum and median planned dose to the ovaries of 1.66 Gy and 0.86 Gy, respectively. CONCLUSION: Gonadal sparing TBI is feasible and deliverable using HT in patients with non-malignant diseases requiring TBI as part of a pre-stem cell transplant conditioning regimen.

4.
J Appl Clin Med Phys ; 20(10): 134-141, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31532068

RESUMEN

PURPOSE: This study aims to compare stereotactic radiosurgery (SRS) planning of epilepsy that complies with Radiosurgery or Open Surgery for Epilepsy (ROSE) guidelines in GammaKnife, non-coplanar conformal (NCC) plan in Eclipse, dynamic conformal arc (DCA) plan in Brainlab, and a volumetric modulated arc therapy (VMAT) plan in Eclipse. METHODS: Twenty plans targeting Mesial temporal lobe epilepsy (MTLE) was generated using GammaKnife, Eclipse with 20 NCC beams, Brainlab with 5 DCA, and Eclipse VMAT with 4 arcs observing ROSE trial guidelines. Multivariate analysis of variance and Wilcoxon signed-rank test were used to compare dosimetric data of the plans and perform pairwise comparison, respectively. RESULTS: The plans obeyed the recommended prescription isodose volume (PIV) within 5.5-7.5 cc and maximum doses to brainstem, optic apparatus (OA) of 10 and 8 Gy, respectively, for a prescription dose of 24 Gy. The volumes of the target were in the range 4.0-7.4 cc. Mean PIV, maximum dose to brainstem, OA were 6.5 cc, 10 Gy, 7.9 Gy in GammaKnife; 7.2 cc, 6.1 Gy, 4.5 Gy in Eclipse NCC; 7.2 cc, 6.4 Gy, 5.7 Gy in Brainlab DCA; and 5.2 cc, 8.4 Gy, 6.1 Gy in Eclipse VMAT plans, respectively. Multivariate analysis of variance showed significant differences among the 4 SRS planning techniques (P-values < 0.01). CONCLUSIONS: Among the 4 SRS planning methods, VMAT with least PIV and acceptable maximum doses to brainstem and OA showed highest compliance with ROSE trial. Having the most conformal dose distribution and least dose inhomogeneity, VMAT scored higher than GK, Eclipse NCC, and Brainlab DCA plans.


Asunto(s)
Epilepsia del Lóbulo Temporal/cirugía , Guías de Práctica Clínica como Asunto/normas , Garantía de la Calidad de Atención de Salud/normas , Radiocirugia/normas , Planificación de la Radioterapia Asistida por Computador/métodos , Planificación de la Radioterapia Asistida por Computador/normas , Humanos , Órganos en Riesgo/efectos de la radiación , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
5.
J Appl Clin Med Phys ; 19(3): 19-26, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29524301

RESUMEN

Robust optimization generates scenario-based plans by a minimax optimization method to find optimal scenario for the trade-off between target coverage robustness and organ-at-risk (OAR) sparing. In this study, 20 lung cancer patients with tumors located at various anatomical regions within the lungs were selected and robust optimization photon treatment plans including intensity modulated radiotherapy (IMRT) and volumetric modulated arc therapy (VMAT) plans were generated. The plan robustness was analyzed using perturbed doses with setup error boundary of ±3 mm in anterior/posterior (AP), ±3 mm in left/right (LR), and ±5 mm in inferior/superior (IS) directions from isocenter. Perturbed doses for D99 , D98 , and D95 were computed from six shifted isocenter plans to evaluate plan robustness. Dosimetric study was performed to compare the internal target volume-based robust optimization plans (ITV-IMRT and ITV-VMAT) and conventional PTV margin-based plans (PTV-IMRT and PTV-VMAT). The dosimetric comparison parameters were: ITV target mean dose (Dmean ), R95 (D95 /Dprescription ), Paddick's conformity index (CI), homogeneity index (HI), monitor unit (MU), and OAR doses including lung (Dmean , V20 Gy and V15 Gy ), chest wall, heart, esophagus, and maximum cord doses. A comparison of optimization results showed the robust optimization plan had better ITV dose coverage, better CI, worse HI, and lower OAR doses than conventional PTV margin-based plans. Plan robustness evaluation showed that the perturbed doses of D99 , D98 , and D95 were all satisfied at least 99% of the ITV to received 95% of prescription doses. It was also observed that PTV margin-based plans had higher MU than robust optimization plans. The results also showed robust optimization can generate plans that offer increased OAR sparing, especially for normal lungs and OARs near or abutting the target. Weak correlation was found between normal lung dose and target size, and no other correlation was observed in this study.


Asunto(s)
Neoplasias Pulmonares/tratamiento farmacológico , Órganos en Riesgo/efectos de la radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/normas , Humanos , Dosificación Radioterapéutica , Incertidumbre
6.
Acta Oncol ; 56(8): 1043-1047, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28270018

RESUMEN

INTRODUCTION: Spatially fractionated radiation therapy (SFRT or grid therapy) has proven to be effective in management of bulky tumors. The aim of this project is to study the therapeutic ratio (TR) of helical Tomotherapy (HT)-based grid therapy using linear-quadratic cell survival model. MATERIAL AND METHODS: HT-based grid (or HT-GRID) plan was generated using a patient-specific virtual grid pattern of high-dose cylindrical regions using MLCs. TR was defined as the ratio of normal tissue surviving fraction (SF) under HT-GRID irradiation to an open debulking field of an equivalent dose that result in the same tumor cell SF. TR was estimated from DVH data on ten HT-GRID patient plans with deep seated, bulky tumor. Dependence of the TR values on radiosensitivity of the tumor cells and prescription dose was analyzed. RESULTS: The mean ± standard deviation (SD) of TR was 4.0 ± 0.7 (range: 3.1-5.5) for the 10 patients with single fraction maximum dose of 20 Gy to GTV assuming a tumor cell SF at 2 Gy (SF2t) value of 0·5. In addition, the mean ± SD of TR values for SF2t values of 0.3 and 0.7 were found to be 1 ± 0.1 and 18.0 ± 5.1, respectively. Reducing the prescription dose to 15 and 10 Gy lowered the respective TR values to 2.0 ± 0.2 and 1.2 ± 0.04 for a SF2t value of 0.5. CONCLUSION: HT-GRID therapy demonstrates a significant therapeutic advantage over uniform dose from an open field irradiation for the same tumor cell kill. TR increases with the radioresistance of the tumor cells and with prescription dose.


Asunto(s)
Modelos Biológicos , Neoplasias/radioterapia , Tolerancia a Radiación/efectos de la radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada , Humanos , Dosificación Radioterapéutica , Estudios Retrospectivos
7.
J Appl Clin Med Phys ; 18(1): 178-185, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28291935

RESUMEN

RaySearch RayStation Fallback (FB) planning module can generate an equivalent backup radiotherapy treatment plan facilitating treatment on other linear accelerators. FB plans were generated from the RayStation FB module by simulating the original plan target and organ at risk (OAR) dose distribution and delivered in various backup linear accelerators. In this study, helical tomotherapy (HT) backup plans used in Varian TrueBeam linear accelerator were generated with the RayStation FB module. About 30 patients, 10 with lung cancer, 10 with head and neck (HN) cancer, and 10 with prostate cancer, who were treated with HT, were included in this study. Intensity-modulated radiotherapy Fallback plans (FB-IMRT) were generated for all patients, and three-dimensional conformal radiotherapy Fallback plans (FB-3D) were only generated for lung cancer patients. Dosimetric comparison study evaluated FB plans based on dose coverage to 95% of the PTV volume (R95), PTV mean dose (Dmean), Paddick's conformity index (CI), and dose homogeneity index (HI). The evaluation results showed that all IMRT plans were statistically comparable between HT and FB-IMRT plans except that PTV HI was worse in prostate, and PTV R95 and HI were worse in HN multitarget plans for FB-IMRT plans. For 3D lung cancer plans, only the PTV R95 was statistically comparable between HT and FB-3D plans, PTV Dmean was higher, and CI and HI were worse compared to HT plans. The FB plans using a TrueBeam linear accelerator generally offer better OAR sparing compared to HT plans for all the patients. In this study, all cases of FB-IMRT plans and 9/10 cases of FB-3D plans were clinically acceptable without further modification and optimization once the FB plans were generated. However, the statistical differences between HT and FB-IMRT/3D plans might not be of any clinically significant. One FB-3D plan failed to simulate the original plan without further optimization.


Asunto(s)
Neoplasias de Cabeza y Cuello/radioterapia , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias Pulmonares/radioterapia , Neoplasias de la Próstata/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada Espiral/métodos , Neoplasias de Cabeza y Cuello/diagnóstico por imagen , Humanos , Neoplasias Pulmonares/diagnóstico por imagen , Masculino , Aceleradores de Partículas , Neoplasias de la Próstata/diagnóstico por imagen , Radiometría , Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/métodos
8.
J Appl Clin Med Phys ; 18(5): 237-244, 2017 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-28771941

RESUMEN

INTRODUCTION: The gamma analysis used for quality assurance of a complex radiotherapy plan examines the dosimetric equivalence between planned and measured dose distributions within some tolerance. This study explores whether the dosimetric difference is correlated with any radiobiological difference between delivered and planned dose. METHODS: VMAT or IMRT plans optimized for 14 cancer patients were calculated and delivered to a QA device. Measured dose was compared against planned dose using 2-D gamma analysis. Dose volume histograms (for various patient structures) obtained by interpolating measured data were compared against the planned ones using a 3-D gamma analysis. Dose volume histograms were used in the Poisson model to calculate tumor control probability for the treatment targets and in the Sigmoid dose-response model to calculate normal tissue complication probability for the organs at risk. RESULTS: Differences in measured and planned dosimetric data for the patient plans passing at ≥94.9% rate at 3%/3 mm criteria are not statistically significant. Average ± standard deviation tumor control probabilities based on measured and planned data are 65.8±4.0% and 67.8±4.1% for head and neck, and 71.9±2.7% and 73.3±3.1% for lung plans, respectively. The differences in tumor control probabilities obtained from measured and planned dose are statistically insignificant. However, the differences in normal tissue complication probabilities for larynx, lungs-GTV, heart, and cord are statistically significant for the patient plans meeting ≥94.9% passing criterion at 3%/3 mm. CONCLUSION: A ≥90% gamma passing criterion at 3%/3 mm cannot assure the radiobiological equivalence between planned and delivered dose. These results agree with the published literature demonstrating the inadequacy of the criterion for dosimetric QA and suggest for a tighter tolerance.


Asunto(s)
Dosificación Radioterapéutica , Radioterapia de Intensidad Modulada/normas , Humanos , Distribución de Poisson , Radiobiología , Radiometría , Planificación de la Radioterapia Asistida por Computador , Radioterapia de Intensidad Modulada/métodos
9.
J Appl Clin Med Phys ; 17(1): 396-407, 2016 01 08.
Artículo en Inglés | MEDLINE | ID: mdl-26894367

RESUMEN

Spatially fractionated radiotherapy (GRID) was designed to treat large tumors while sparing skin, and it is usually delivered with a linear accelerator using a commercially available block or multileaf collimator (LINAC-GRID). For deep-seated (skin to tumor distance (> 8 cm)) tumors, it is always a challenge to achieve adequate tumor dose coverage. A novel method to perform GRID treatment using helical tomotherapy (HT-GRID) was developed at our institution. Our approach allows treating patients by generating a patient-specific virtual GRID block (software-generated) and using IMRT technique to optimize the treatment plan. Here, we report our initial clinical experience using HT-GRID, and dosimetric comparison results between HT-GRID and LINAC-GRID. This study evaluates 10 previously treated patients who had deep-seated bulky tumors with complex geometries. Five of these patients were treated with HT-GRID and replanned with LINAC-GRID for comparison. Similarly, five other patients were treated with LINAC-GRID and replanned with HT-GRID for comparison. The prescription was set such that the maximum dose to the GTV is 20 Gy in a single fraction. Dosimetric parameters compared included: mean GTV dose (DGTV mean), GTV dose inhomogeneity (valley-to-peak dose ratio (VPR)), normal tissue doses (DNmean), and other organs-at-risk (OARs) doses. In addition, equivalent uniform doses (EUD) for both GTV and normal tissue were evaluated. In summary, HT-GRID technique is patient-specific, and allows adjustment of the GRID pattern to match different tumor sizes and shapes when they are deep-seated and cannot be adequately treated with LINAC-GRID. HT-GRID delivers a higher DGTV mean, EUD, and VPR compared to LINAC-GRID. HT-GRID delivers a higher DNmean and lower EUD for normal tissue compared to LINAC-GRID. HT-GRID plans also have more options for tumors with complex anatomical relationships between the GTV and the avoidance OARs (abutment or close proximity).


Asunto(s)
Fraccionamiento de la Dosis de Radiación , Procesamiento de Imagen Asistido por Computador/métodos , Neoplasias/radioterapia , Tratamientos Conservadores del Órgano , Planificación de la Radioterapia Asistida por Computador/métodos , Tomografía Computarizada Espiral/métodos , Simulación por Computador , Humanos , Modelos Biológicos , Neoplasias/patología , Órganos en Riesgo/efectos de la radiación , Aceleradores de Partículas , Radioterapia de Intensidad Modulada , Programas Informáticos
10.
J Ark Med Soc ; 112(5): 66-7, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26390538

RESUMEN

Mesial temporal lobe epilepsy (MTLE) describes recurrent seizure activity originating from the depths of the temporal lobe. MTLE patients who fail two trials of medication now require testing for surgical candidacy at an epilepsy center. For these individuals, temporal lobectomy offers the greatest likelihood for seizure-freedom (up to 80-90%); unfortunately, this procedure remains largely underutilized. Moreover, for select patients unable to tolerate open surgery, novel techniques are emerging for selective ablation of the mesial temporal structures, including stereotactic radiosurgery (SRS). We present here a review of SRS as a potential therapy for MTLE, when open surgery is not an option.


Asunto(s)
Epilepsia del Lóbulo Temporal/cirugía , Radiocirugia , Epilepsia del Lóbulo Temporal/patología , Humanos , Selección de Paciente
11.
Int J Radiat Oncol Biol Phys ; 119(3): 737-749, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38110104

RESUMEN

PURPOSE: The highly heterogeneous dose delivery of spatially fractionated radiation therapy (SFRT) is a profound departure from standard radiation planning and reporting approaches. Early SFRT studies have shown excellent clinical outcomes. However, prospective multi-institutional clinical trials of SFRT are still lacking. This NRG Oncology/American Association of Physicists in Medicine working group consensus aimed to develop recommendations on dosimetric planning, delivery, and SFRT dose reporting to address this current obstacle toward the design of SFRT clinical trials. METHODS AND MATERIALS: Working groups consisting of radiation oncologists, radiobiologists, and medical physicists with expertise in SFRT were formed in NRG Oncology and the American Association of Physicists in Medicine to investigate the needs and barriers in SFRT clinical trials. RESULTS: Upon reviewing the SFRT technologies and methods, this group identified challenges in several areas, including the availability of SFRT, the lack of treatment planning system support for SFRT, the lack of guidance in the physics and dosimetry of SFRT, the approximated radiobiological modeling of SFRT, and the prescription and combination of SFRT with conventional radiation therapy. CONCLUSIONS: Recognizing these challenges, the group further recommended several areas of improvement for the application of SFRT in cancer treatment, including the creation of clinical practice guidance documents, the improvement of treatment planning system support, the generation of treatment planning and dosimetric index reporting templates, and the development of better radiobiological models through preclinical studies and through conducting multi-institution clinical trials.


Asunto(s)
Ensayos Clínicos como Asunto , Fraccionamiento de la Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador , Humanos , Planificación de la Radioterapia Asistida por Computador/métodos , Planificación de la Radioterapia Asistida por Computador/normas , Estudios Prospectivos , Neoplasias/radioterapia , Oncología por Radiación/normas , Estudios Multicéntricos como Asunto , Radiobiología , Consenso
12.
Technol Cancer Res Treat ; 22: 15330338231180779, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287260

RESUMEN

Introduction: High-dose total body irradiation (TBI) is often part of myeloablative conditioning in acute leukemia. Modern volumetric modulated arc therapy (VMAT)-based plans employ arcs to the inferior-most portion of the body that can be simulated in a head-first position and use 2D planning for the inferior body which can result in heterogeneous doses. Here, we describe our institution's unique protocol for delivering high-dose TBI entirely with VMAT and retrospectively compare dosimetric outcomes with helical tomotherapy (HT) plans. Additionally, we describe our method of oropharyngeal mucosal sparing that was implemented after fatal mucositis occurred in two patients. Methods: Thirty-one patients were simulated and treated in head-first (HFS) and feet-first (FFS) orientations. Patients were treated with VMAT (n = 26) or HT (n = 5). In VMAT plans, to synchronize doses between the orientations, images were deformably registered and the HFS dose was transferred to the FFS plan and used as a background dose when optimizing plans. Six to eight isocenters with two arcs per isocenter were generated. HT was delivered with an established technique. Patients were treated to 13.2 Gy over eight twice daily fractions. Dosimetric outcomes and toxicities were retrospectively compared. Results: Prescription dose and organ at risk (OAR) constraints were met for all patients. Lower lung doses were achieved with VMAT relative to HT plans (7.4 vs 7.7 Gy, P = .009). Statistically significant improvement in mucositis was not achieved after adopting a mucosal-sparing technique, however lower doses to the oropharyngeal mucosal were achieved (6.9 vs 14.1 Gy, P = .009), and no further mucositis-related deaths occurred. Conclusions: This full-body VMAT method of TBI achieves dose goals, eliminates risk of heterogenous doses within the femur, and demonstrates that selective OAR sparing with the purpose of reducing TBI-related morbidity and mortality is possible at any institution with a VMAT-capable linear accelerator.


Asunto(s)
Radioterapia de Intensidad Modulada , Humanos , Radioterapia de Intensidad Modulada/efectos adversos , Radioterapia de Intensidad Modulada/métodos , Irradiación Corporal Total/efectos adversos , Dosificación Radioterapéutica , Estudios de Factibilidad , Estudios Retrospectivos , Planificación de la Radioterapia Asistida por Computador/métodos , Órganos en Riesgo/efectos de la radiación
13.
Technol Cancer Res Treat ; 21: 15330338221086420, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35289202

RESUMEN

Background: Spatially fractionated radiotherapy (GRID) could effectively de-bulk tumor volumes for shallow and deep-seated locally advanced tumors. A new treatment planning method using the three-dimensional-volumetric modulated arc therapy (VMAT) technique combined with a novel, software-generated, virtual GRID block (VGB) was developed which allows better conformity plans (VMAT-GRID) and maintain the GRID dosimetric characteristics. The dosimetric metrics calculated via the valley/peak ratio (Dmin/Dmax), D90/D10, gross tumor volume (GTV) mean dose (Dmean), GTV equivalent uniform dose (EUD), and normal tissue maximum dose. Methods: Twenty-five patients with tumor volumes ranging between 71.6 cc and 4683 cc at various tumor sites were retrospectively studied. The prescription was 20 Gy to the maximum point of GTV in a single fraction, and the VMAT-GRID plan was generated using 6 MV/10 MV flattening-filter-free beams. Results: The optimized VGB was designed with the median center-to-center distance of 27 mm, and 9 mm for the median diameter of the opening area in this study. These 2 values can be used to design any optimized VGB, the final VGB may be modified to generate a patient-specific VGB. The median GTV mean dose was 918 (877- 938) cGy, and the median GTV EUD dose was 818 (597-916) cGy. In terms of dose inhomogeneity, the median valley-to-peak dose ratio was 0.07 (0.02-0.26); and the median ratio of D90/D10 was 0.70 (0.38-0.94). For the organ-at-risk doses, there was a rapid dose drop-off in the normal tissue area immediately adjacent to the target, and the maximum global doses were all located inside the GTV. Conclusion: Our results indicated that the VMAT-GRID planning approach could successfully deliver dose with acceptable GRID dose metric while sparing the normal tissue especially in the region near the target due to the rapid dose drop-off and restricting maximum dose inside the target.


Asunto(s)
Neoplasias , Radioterapia de Intensidad Modulada , Estudios de Factibilidad , Humanos , Neoplasias/radioterapia , Órganos en Riesgo , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Estudios Retrospectivos
14.
Biomed Phys Eng Express ; 8(2)2022 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-35086071

RESUMEN

Purpose. This is a dosimetric study comparing stereotactic body radiotherapy (SBRT) plans of spine tumors using Brainlab Elements Spine planning module against Eclipse RapidArc plans. Dose conformity, dose gradient, dose fall-off, and patient-specific quality assurance (QA) metrics were evaluated. Methods:Twenty patients were immobilized in supine position using half Vac-Lok. A prescription dose of 16 Gy in a single fraction was planned for Varian TrueBeam. Conformal arc plans were generated with Pencil beam (PB), MonteCarlo (MC) in Elements, and RapidArc with Acuros XB algorithm in Eclipse using identical treatment geometry.Results. Eclipse, Elements PB, and Elements MC generated dosimetrically conformal plans having Inverse Paddick Conformity Index (IPCI) <1.3. All plans satisfied the dose constraints to target and OARs. Elements PB had a sharper gradient than Elements MC with average GI of 3.67(95% CI: 3.52-3.82) and 4.06 (95% CI: 3.93-4.20) respectively. Eclipse plans were more homogeneous with mean HI = 1.22 (95% CI: 1.20-1.23) that is lower than others. Average maximum clinical target volume (CTV) doses were higher in Elements MC with 22.31 Gy (95% CI: 21.87-22.74), while PB plans have 21.15 Gy (95% CI: 20.36-21.96), respectively. Elements MC and PB plans had lower average dose to 0.35 c.c. of spinal cord (D0.35cc) of 7.60 Gy (95% CI: 7.18-8.02) and 8.42 Gy (95% CI: 7.83-9.01). All plans had >95% points passing the gamma QA criteria at 3%/2 mm.Conclusion. All treatment plans achieved clinically acceptable target coverage >95% and meet spinal cord dose limits. Smart optimization in Brainlab Elements spine module produced dosimetrically superior plans by better spinal cord sparing.


Asunto(s)
Radiocirugia , Radioterapia de Intensidad Modulada , Humanos , Radiometría , Radiocirugia/métodos , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos
15.
Adv Radiat Oncol ; 7(4): 100940, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35814853

RESUMEN

Purpose: Understanding patterns of relapse for primary central nervous system lymphoma (PCNSL) may inform mechanisms of recurrence and optimal consolidation strategies. In this study, we report patterns of relapse among patients with PCNSL who achieved a complete response to high-dose methotrexate (HD-MTX)-based chemotherapy with or without consolidation radiation therapy (RT). Methods and Materials: We conducted an institutional retrospective analysis of patients with PCNSL who received HD-MTX-based chemotherapy between November 2001 and May 2019. Relapses were characterized as in-field (within original T1 contrasted lesion), marginal (within T2 fluid-attenuated inversion recovery but not T1), local (in-field or marginal), distant brain (no overlap), or distant (distant brain, cerebrospinal fluid, vitreous or extra-axial) and further characterized with respect to periventricular location (≤10 mm of ventricles). Results: Seventy-eight patients with PCNSL met inclusion criteria, of whom 29 (37%) underwent consolidation RT. Median progression-free survival and overall survival were 57.0 and 66.7 months, respectively. After a median follow-up of 38.9 months, a total of 32 patients (41%) experienced recurrence. Most patients (21 [65.6%]) had a periventricular failure. Surprisingly, local recurrences (n = 11) were exclusively observed within periventricular lesions, whereas distant recurrences (n = 21) were seen in both periventricular and nonperiventricular locations (P = .009). The median time to progression was shorter for locally recurrent lesions compared with distant recurrences (13.8 vs 26.1 months; P = .03). Conclusions: After complete response to HD-MTX, few failures occurred within initial T1 contrast-enhancing lesions and many of these may have been alternatively classified as periventricular failures. These observations argue against the use of purely focal RT consolidation for patients who achieve a complete response after HD-MTX-based chemotherapy and suggest that periventricular reseeding may have a central role in PCNSL recurrence.

16.
Adv Radiat Oncol ; 7(2): 100866, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35198833

RESUMEN

PURPOSE: Spatially fractionated radiation therapy (SFRT), which delivers highly nonuniform dose distributions instead of conventionally practiced homogeneous tumor dose, has shown high rates of clinical response with minimal toxicities in large-volume primary or metastatic malignancies. However, prospective multi-institutional clinical trials in SFRT are lacking, and SFRT techniques and dose parameters remain variable. Agreement on dose prescription, technical administration, and clinical and translational design parameters for SFRT trials is essential to enable broad participation and successful accrual to rigorously test the SFRT approach. We aimed to develop a consensus for the design of multi-institutional clinical trials in SFRT, tailored to specific primary tumor sites, to help facilitate development and enhance the feasibility of such trials. METHODS AND MATERIALS: Primary tumor sites with sufficient pilot experience in SFRT were identified, and fundamental trial design questions were determined. For each tumor site, a comprehensive consensus effort was established through disease-specific expert panels. Clinical trial design criteria included eligibility, SFRT technology and technique, dose and fractionation, target- and normal-tissue dose parameters, systemic therapies, clinical trial endpoints, and translational science considerations. Iterative appropriateness rank voting, expert panel consensus reviews and discussions, and public comment posting were used for consensus development. RESULTS: Clinical trial criteria were developed for head and neck cancer and soft-tissue sarcoma. Final consensus among the 22 trial design categories each (a total of 163 criteria) was high to moderate overall. Uniform patient cohorts of advanced bulky disease, standardization of SFRT technologies and dosimetry and physics parameters, and collection of translational correlates were considered essential to trial design. Final guideline recommendations and the degree of agreement are presented and discussed. CONCLUSIONS: This consensus provides design guidelines for the development of prospective multi-institutional clinical trials testing SFRT in advanced head and neck cancer and soft-tissue sarcoma through in-advance harmonization of the fundamental clinical trial design among SFRT experts, potential investigators, and the SFRT community.

17.
Med Phys ; 38(7): 4372-85, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21859038

RESUMEN

PURPOSE: To evaluate the feasibility of line-focused ultrasound for thermal ablation of superficially located tumors. METHODS: A SonoKnife is a cylindrical-section ultrasound transducer designed to radiate from its concave surface. This geometry generates a line-focus or acoustic edge. The motivation for this approach was the noninvasive thermal ablation of advanced head and neck tumors and positive neck nodes in reasonable treatment times. Line-focusing may offer advantages over the common point-focusing of spherically curved radiators such as faster coverage of a target volume by scanning of the acoustic edge. In this paper, The authors report studies using numerical models and phantom and ex vivo experiments using a SonoKnife prototype. RESULTS: Acoustic edges were generated by cylindrical-section single-element ultrasound transducers numerically, and by the prototype experimentally. Numerically, simulations were performed to characterize the acoustic edge for basic design parameters: transducer dimensions, line-focus depth, frequency, and coupling thickness. The dimensions of the acoustic edge as a function of these parameters were determined. In addition, a step-scanning simulation produced a large thermal lesion in a reasonable treatment time. Experimentally, pressure distributions measured in degassed water agreed well with acoustic simulations, and sonication experiments in gel phantoms and ex vivo porcine liver samples produced lesions similar to those predicted with acoustic and thermal models. CONCLUSIONS: Results support the feasibility of noninvasive thermal ablation with a SonoKnife.


Asunto(s)
Ultrasonido Enfocado de Alta Intensidad de Ablación/instrumentación , Modelos Biológicos , Simulación por Computador , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Estudios de Factibilidad , Humanos
18.
Technol Cancer Res Treat ; 20: 15330338211063033, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34855577

RESUMEN

Purpose: To monitor intrafraction motion during spine stereotactic body radiotherapy(SBRT) treatment delivery with readily available technology, we implemented triggered kV imaging using the on-board imager(OBI) of a modern medical linear accelerator with an advanced imaging package. Methods: Triggered kV imaging for intrafraction motion management was tested with an anthropomorphic phantom and simulated spine SBRT treatments to the thoracic and lumbar spine. The vertebral bodies and spinous processes were contoured as the image guided radiotherapy(IGRT) structures specific to this technique. Upon each triggered kV image acquisition, 2D projections of the IGRT structures were automatically calculated and updated at arbitrary angles for display on the kV images. Various shifts/rotations were introduced in x, y, z, pitch, and yaw. Gantry-angle-based triggering was set to acquire kV images every 45°. A group of physicists/physicians(n = 10) participated in a survey to evaluate clinical efficiency and accuracy of clinical decisions on images containing various phantom shifts. This method was implemented clinically for treatment of 42 patients(94 fractions) with 15 second time-based triggering. Result: Phantom images revealed that IGRT structure accuracy and therefore utility of projected contours during triggered imaging improved with smaller CT slice thickness. Contouring vertebra superior and inferior to the treatment site was necessary to detect clinically relevant phantom rotation. From the survey, detectability was proportional to the shift size in all shift directions and inversely related to the CT slice thickness. Clinical implementation helped evaluate robustness of patient immobilization. Based on visual inspection of projected IGRT contours on planar kV images, appreciable intrafraction motion was detected in eleven fractions(11.7%). Discussion: Feasibility of triggered imaging for spine SBRT intrafraction motion management has been demonstrated in phantom experiments and implementation for patient treatments. This technique allows efficient, non-invasive monitoring of patient position using the OBI and patient anatomy as a direct visual guide.


Asunto(s)
Fraccionamiento de la Dosis de Radiación , Movimiento (Física) , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Guiada por Imagen/métodos , Radioterapia de Intensidad Modulada/métodos , Columna Vertebral/diagnóstico por imagen , Columna Vertebral/efectos de la radiación , Humanos , Procesamiento de Imagen Asistido por Computador , Imagenología Tridimensional , Aceleradores de Partículas , Fantasmas de Imagen , Dosificación Radioterapéutica , Radioterapia Guiada por Imagen/normas , Radioterapia de Intensidad Modulada/efectos adversos , Radioterapia de Intensidad Modulada/normas , Tomografía Computarizada por Rayos X
19.
Int J Radiat Oncol Biol Phys ; 111(5): 1155-1164, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34352289

RESUMEN

PURPOSE: The aim of this study was to examine current practice patterns in pediatric total body irradiation (TBI) techniques among COG member institutions. METHODS AND MATERIALS: Between November 2019 and February 2020, a questionnaire containing 52 questions related to the technical aspects of TBI was sent to medical physicists at 152 COG institutions. The questions were designed to obtain technical information on commonly used TBI treatment techniques. Another set of 9 questions related to the clinical management of patients undergoing TBI was sent to 152 COG member radiation oncologists at the same institutions. RESULTS: Twelve institutions were excluded because TBI was not performed in their institutions. A total of 88 physicists from 88 institutions (63% response rate) and 96 radiation oncologists from 96 institutions (69% response rate) responded. The anterior-posterior/posterior-anterior (AP/PA) technique was the most common technique reported (49 institutions [56%]); 44 institutions (50%) used the lateral technique, and 14 (16%) used volumetric modulated arc therapy or tomotherapy. Midplane dose rates of 6 to 15 cGy/min were most commonly used. The most common specification for lung dose was the midlung dose for both AP/PA techniques (71%) and lateral techniques (63%). Almost all physician responders agreed with the need to refine current TBI techniques, and 79% supported the investigation of new TBI techniques to further lower the lung dose. CONCLUSIONS: There was no consistency in the practice patterns, methods for dose measurement, and reporting of TBI doses among COG institutions. The lack of standardization precludes meaningful correlation between TBI doses and clinical outcomes including disease control and normal tissue toxicity. The COG radiation oncology discipline is currently undertaking several steps to standardize the practice and dose reporting of pediatric TBI using detailed questionnaires and phantom-based credentialing for all COG centers.


Asunto(s)
Oncología por Radiación , Radioterapia de Intensidad Modulada , Niño , Humanos , Pulmón , Encuestas y Cuestionarios , Irradiación Corporal Total
20.
Int J Hyperthermia ; 26(7): 699-709, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20849263

RESUMEN

This paper reviews systems and techniques to deliver simultaneous thermoradiotherapy of breast cancer. It first covers the clinical implementation of simultaneous delivery of superficial (microwave or ultrasound) hyperthermia and external photon beam radiotherapy, first using a Cobalt-60 teletherapy unit and later medical linear accelerators. The parallel development and related studies of the Scanning Ultrasound Reflector Linear Arrays System (SURLAS), an advanced system specifically designed and developed for simultaneous thermoradiotherapy, follows. The performance characteristics of the SURLAS are reviewed and power limitation problems at high acoustic frequencies (>3 MHz) are discussed along with potential solutions. Next, the feasibility of simultaneous SURLAS hyperthermia and intensity modulated radiation therapy/image-guided radiotherapy (IMRT/IGRT) is established based on published and newly presented studies. Finally, based on the encouraging clinical results thus far, it is concluded that new trials employing the latest technologies are warranted along with further developments in treatment planning.


Asunto(s)
Neoplasias de la Mama/terapia , Hipertermia Inducida , Neoplasias de la Mama/radioterapia , Terapia Combinada , Femenino , Humanos , Embarazo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda