Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Opt Lett ; 48(8): 2002-2005, 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37058627

RESUMEN

Smith-Purcell radiation (SPR) refers to the far-field, strong, spike radiation generated by the interaction of the evanescent Coulomb field of the moving charged particles and the surrounding medium. In applying SPR for particle detection and nanoscale on-chip light sources, wavelength tunability is desired. Here we report on tunable SPR achieved by moving an electron beam parallel to a two-dimensional (2D) metallic nanodisk array. By in-plane rotating the nanodisk array, the emission spectrum of the SPR splits into two peaks, with the shorter-wavelength peak blueshifted and the longer-wavelength one redshifted by increasing the tuning angle. This effect originates from the fact that the electrons fly effectively over a one-dimensional (1D) quasicrystal projected from the surrounding 2D lattice, and the wavelength of SPR is modulated by quasiperiodic characteristic lengths. The experimental data are in agreement with the simulated ones. We suggest that this tunable radiation provides free-electron-driven tunable multiple photon sources at the nanoscale.

2.
Opt Express ; 30(9): 14839-14850, 2022 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-35473219

RESUMEN

Topological photonics offers the possibility of robust transport and efficiency enhancement of information processing. Terahertz (THz) devices, such as waveguides and beam splitters, are prone to reflection loss owing to their sensitivity to defects and lack of robustness against sharp corners. Thus, it is a challenge to reduce backscattering loss at THz frequencies. In this work, we constructed THz photonic topological insulators and experimentally demonstrated robust, topologically protected valley transport in THz photonic crystals. The THz valley photonic crystal (VPC) was composed of metallic cylinders situated in a triangular lattice. By tuning the relevant location of metallic cylinders in the unit cell, mirror symmetry was broken, and the degenerated states were lifted at the K and K' valleys in the band structure. Consequently, a bandgap of THz VPC was opened, and a nontrivial band structure was created. Based on the calculated band structure, THz field distributions, and valley Berry curvature, we verified the topological phase transition in such type of THz photonic crystals. Further, we showed the emergence of valley-polarized topological edge states between the topologically distinct VPCs. The angle-resolved transmittance measurements identified the bulk bandgap in the band structure of the VPC. The measured time-domain spectra demonstrated the topological transport of valley edge states between distinct VPCs and their robustness against bending and defects. Furthermore, experiments conducted on a topological multi-channel intersectional device revealed the valley-polarized characteristic of the topological edge states. This work provides a unique approach to reduce backscattering loss at the THz regime. It also demonstrates potential high-efficiency THz functional devices such as topologically protected beam splitters, low-loss waveguides, and robust delay lines.

3.
Phys Rev Lett ; 129(2): 023601, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35867443

RESUMEN

Photonic quantum information processing relies on operating the quantum state of photons, which usually involves bulky optical components unfavorable for system miniaturization and integration. Here, we report on the transformation and distribution of polarization-entangled photon pairs with multichannel dielectric metasurfaces. The entangled photon pairs interact with metasurface building blocks, where the geometrical-scaling-induced phase gradients are imposed, and are transformed into two-photon entangled states with the desired polarization. Two metasurfaces, each simultaneously distributing polarization-entangled photons to spatially separated multiple channels M (N), may accomplish M×N channels of entanglement distribution and transformation. Experimentally we demonstrate 2×2 and 4×4 distributed entanglement states, including Bell states and superposition of Bell states, with high fidelity and strong polarization correlation. We expect this approach paves the way for future integration of quantum information networks.

4.
Small ; 17(31): e2101282, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34173329

RESUMEN

Phase change materials (PCMs), such as GeSbTe (GST) alloys and vanadium dioxide (VO2 ), play an important role in dynamically tunable optical metadevices. However, the PCMs usually require high thermal annealing temperatures above 700 K, but most flexible metadevices can only work below 500 K owing to the thermal instability of polymer substrates. This contradiction limits the integration of PCMs into flexible metadevices. Here, a mica sheet is chosen as the chemosynthetic support for VO2 and a smooth and uniformly flexible phase change material (FPCM) is realized. Such FPCMs can withstand high temperatures while remaining mechanically flexible. As an example, a metal-FPCM-metal infrared meta-absorber with mechanical flexibility and electrical tunability is demonstrated. Based on the electrically-tuned phase transition of FPCMs, the infrared absorption of the metadevice is continuously tuned from 20% to 90% as the applied current changes, and it remains quite stable at bending states. The metadevice is bent up to 1500 times, while no visible deterioration is detected. For the first time, the FPCM metastructures are significantly added to the flexible material family, and the FPCM-based metadevices show various application prospects in electrically-tunable conformal metadevices, dynamic flexible photodetectors, and active wearable devices.


Asunto(s)
Electricidad
5.
Phys Chem Chem Phys ; 23(33): 18182-18188, 2021 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-34612281

RESUMEN

We investigate the electronic properties and valley physics of Janus monolayer WSSe on a CrI3 substrate layer based on first-principles calculations. It is shown that the K and K' valley degeneracy can be lifted which leads to valley polarization (VP) in the WSSe due to the magnetic proximity coupling to a magnetic substrate. The magnitude of VP is highly sensitive to the interfacial electronic properties and can be tuned by varying the stacking configurations of the heterostructure. Interestingly, the direction of VP can be altered by manipulating the layer alignment without reversing the magnetism orientation of the magnetic substrate CrI3. We suggest that the hybridization between the bands of WSSe and the substrate plays an important role. Meanwhile, the charge distributions have been mapped out to uncover the microscopic origin of the direction variable VP. In addition, large VP can be achieved by adjusting the interlayer spacing. Our investigations may have potential applications in the design of valleytronic devices.

6.
Opt Express ; 28(3): 3552-3560, 2020 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-32122021

RESUMEN

We experimentally demonstrate a bendable cloaking structure composed of obliquely stacked planar metallic shells that individually enclose the objects to be hidden. The ensemble of shells acts as a disordered oblique grating capable of bending along a curved structure and exhibits broadband invisibility from 0.2 to 1.0 THz. Hiding cloaked objects sized hundreds of microns could prevent the detection of certain powders that are sensitive to terahertz waves; such a cloaking structure can also be considered as a shape-changing passageway that transfers the electromagnetic waves without interfering with them. Our approach provides a unique way to achieve broadband electromagnetic invisibility.

7.
Opt Express ; 27(26): 38451-38462, 2019 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-31878612

RESUMEN

We investigate circularly polarized photoluminescence (PL) in the MoS2/MoO3 heterostructure, which was fabricated by transferring MoS2 monolayer to cover the MoO3 few layers on the SiO2/Si substrate. It is shown that the PL with the same helicity as the excitation light is dominant due to the inherent chiral optical selectivity, which allows exciting one of the valleys in MoS2 monolayer. The degree of polarization (DP), which characterizes the intensity difference of two chiral components of PL, is unequal for the right-handed and left-handed circularly polarized excitations in the MoS2/MoO3 heterostructure. This effect is different from the one in pristine MoS2. Our Raman spectra results together with ab initio calculations indicate the p-doped features of the MoS2 when it covers the MoO3 layers. Thus the possible explanation of the unequal DP is that the p-doping process generates a built-in voltage and therefore brings the difference of electron-hole overlaps between K and K' valleys. Namely the asymmetric valley polarization may be obtained in the MoS2/MoO3 heterostructure. Consequently, the circularly polarized PL caused by the electron-hole recombination at K and K' valleys manifests unequal DP for the right-handed and left-handed helix excitations. This asymmetric effect is further enhanced by decreasing the temperature in the MoS2/MoO3 heterostructure. Our investigation provides a unique platform for developing novel two-dimensional valleytronic devices.

8.
Opt Express ; 26(1): 516-524, 2018 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-29328328

RESUMEN

In this work, we demonstrate broadband integrated polarization rotator (IPR) with a series of three-layer rotating metallic grating structures. This transmissive optical IPR can conveniently rotate the polarization of linearly polarized light to any desired directions at different spatial locations with high conversion efficiency, which is nearly constant for different rotation angles. The linear polarization rotation originates from multi-wave interference in the three-layer grating structure. We anticipate that this type of IPR will find wide applications in analytical chemistry, biology, communication technology, imaging, etc.

9.
Opt Express ; 25(5): 5772-5780, 2017 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-28380834

RESUMEN

In this work, we present in-plane propagation of surface plasmon polaritons (SPPs) guided by a single dielectric (Al2O3) subwavelength lens. By mounting a designed Al2O3 nanoparticle on the silver film, the effective index of a silver-Al2O3 interface is influenced by the particle thickness, then the phase difference between the silver-air and silver-Al2O3 interface can be utilized to modulate the in-plane propagation of SPPs. We show that an elliptical Al2O3 lens transforms the diffusive SPPs into a collimated beam, whose direction of propagation and beam width can be easily controlled. We also present that a triangular Al2O3 lens significantly reforms the SPPs to a Bessel beam, which possesses non-diffractive and self-healing properties. Our investigation provides unique way to guide the in-plane transport of SPPs by using dielectric subwavelength elements, which may achieve potential applications in plasmonic integrated circuits.

10.
Opt Express ; 25(11): 12081-12089, 2017 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-28786566

RESUMEN

We present theoretically the transport of plasmonic waves in doped graphene tube, which is made by rolling planar graphene sheet into a cylinder and periodic doping is applied on it. It is shown that periodic modulation of the Fermi level along the tube can open gaps in the dispersion relations of graphene plasmons and eventually create plasmonic band structures. The propagation of graphene plasmons is forbidden within the bandgaps; while within the band, the plasmonic waves present axially-extended field distributions and propagate along the tubes, yet well confined around the curved graphene surface. Furthermore, the bandgaps, propagation constants and propagation lengths of the modes in plasmonic band structures are significantly tuned by varying the Fermi level of graphene, which provides active controls over the plasmonic waves. Our proposed structures here may provide an approach to dynamically control the plasmonic waves in graphene-based subwavelength waveguides.

11.
Opt Lett ; 42(6): 1153-1156, 2017 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-28295071

RESUMEN

In this Letter, we report on encoding and display based on stereo standing U-shaped resonator (SUSR) arrays. The SUSR serves as a perfect absorber at a structure-dependent frequency when the polarization of incident light is parallel to the bottom rim of the SUSR. When the incidence polarization is rotated for 90° (perpendicular to the bottom rim of the SUSR), the SUSR turns to a perfect reflector at broadband frequencies. Further, the resonant frequency sensitively depends on the height of the arms of the SUSR. By introducing SUSRs with different arm heights, a resonant absorption state may occur at different frequencies. By defining the resonant absorption state as "dark" and the reflection state as "bright," we can encode and display binary patterns. Beside, when the SUSR rotates with the direction of the standing arms as axis, a different reflectivity, hence, a different shade will be generated. In this way, we may realize a grayscale display. Experimentally, we demonstrate that this encoding and display scheme indeed works.

12.
Opt Lett ; 42(14): 2834-2837, 2017 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-28708181

RESUMEN

In this work, we demonstrate polarization-dependent strong coupling between surface plasmon polaritons (SPPs) and excitons in the J-aggregates-attached aperture array. It is shown that the excitons strongly couple with the polarization-dependent SPPs, and Rabi splittings are consequently observed. As a result, the polarization-dependent polariton bands are generated in the system. Increasing the incident angle, the polaritons disperse to higher energies under transverse-electric illumination, while the polaritons disperse to lower energies under transverse-magnetic illumination. Therefore, at different polarization incidence, we experimentally achieve distinct polaritons with opposite dispersion directions. In this way, tuning the polarization of the incident light, we can excite different polaritons whose energy propagates to different directions. Furthermore, by retrieving the mixing fractions of the components in these polariton bands, we find that the dispersion properties of the polaritons are inherited from both the SPPs and the excitons. Our investigation may inspire related studies on tunable photon-exciton interactions and achieve some potential applications on active polariton devices.

13.
Opt Lett ; 41(24): 5740-5743, 2016 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-27973520

RESUMEN

In this Letter, we present hybrid strong coupling between multiple photonic modes and excitons in an organic-dye-attached photonic quasicrystal. The excitons effectively interact with the photonic modes offered by the photonic quasicrystal, and multiple hybrid polariton bands are demonstrated in both experiments and calculations. Furthermore, by retrieving the measured dispersion map, we get the mixing fractions of photonic modes and excitons, and show that the polariton bands inherit not only the energy dispersion features, but also the damping behaviors from both the photonic modes and the excitons. Our investigation may inspire related studies on multimode light-matter interactions and achieve some potential applications for multimode sensors.

14.
Opt Express ; 22(21): 25700-9, 2014 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-25401603

RESUMEN

In this work, we have experimentally and theoretically studied band modulation and in-plane propagation of surface plasmons (SPs) in composite nanostructures with aperture arrays and metallic gratings. It is shown that the plasmonic band structure of the composite system can be significantly modulated because of coupling between the aperture and grating. By changing the relative positions between these optical components, the resonant modes would shift or split. And the resonant SP modes launched on the structure surface can be effectively modified by the geometric parameters. Further, we provide an experimental observation to directly show the SP in-plane propagation by using far-field measurements, which agree with the simulated results. Our study offers a convenient way for observing the SP propagation in far field, and provides unique composite nanostructures for possible applications in subwavelength optodevices, such as optical sensors and detectors.


Asunto(s)
Técnicas Biosensibles/instrumentación , Nanoestructuras/química , Nanotecnología/instrumentación , Óptica y Fotónica , Refractometría/instrumentación , Resonancia por Plasmón de Superficie/instrumentación , Radiación Electromagnética
15.
Opt Lett ; 39(12): 3539-42, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24978531

RESUMEN

In this Letter, we construct a metamaterial with dual-mode electromagnetically induced transparency (EIT)-like behavior by introducing "bright atoms," "quasi-dark atoms," and "dark atoms" simultaneously. The dual-mode EIT-like behavior has been demonstrated both experimentally and theoretically in terahertz (THz) regime. At two EIT-like modes, slow light is also observed as two time-delayed wave packets, and the effective group refractive index can reach 10(2). Furthermore, stable dual-mode EIT-like behavior is verified in this metamaterial for a wide range of oblique incident angles. Our work provides a design approach to mimic dual-mode EIT, and such an approach may achieve potential applications on miniaturized and versatile THz devices.

16.
Opt Express ; 21 Suppl 3: A313-23, 2013 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-24104419

RESUMEN

We report in this work that quantum efficiency can be significantly enhanced in an ultra-thin silicon solar cell coated by a fractal-like pattern of silver nano cuboids. When sunlight shines this solar cell, multiple antireflection bands are achieved mainly due to the self-similarity in the fractal-like structure. Actually, several kinds of optical modes exist in the structure. One is cavity modes, which come from Fabry-Perot resonances at the longitudinal and transverse cavities, respectively; the other is surface plasmon (SP) modes, which propagate along the silicon-silver interface. Due to the fact that several feature sizes distribute in a fractal-like structure, both low-index and high-index SP modes are simultaneously excited. As a whole effect, broadband absorption is achieved in this solar cell. Further by considering the ideal process that the lifetime of carriers is infinite and the recombination loss is ignored, we demonstrate that external quantum efficiency of the solar cell under this ideal condition is significantly enhanced. This theoretical finding contributes to high-performance plasmonic solar cells and can be applied to designing miniaturized compact photovoltaic devices.

17.
J Nanosci Nanotechnol ; 13(2): 984-8, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23646555

RESUMEN

Based on transformation optics, we propose a device to detect the presence of a carpet cloaking structure at near field. By using complementary media, the detective device can optically cancel a certain volume of reflective metal and reveal the hidden medium inside the metal. The detective performance of this device is confirmed by full-wave finite-element simulations. It is shown that the detective device is invisible when there is no carpet cloak in the system, yet it becomes visible with the presence of the carpet cloak. The device works at near field, but the response can be found even at the far field. Furthermore, it is shown that the device can detect both anisotropic and isotropic carpet cloaking structures. The investigation may provide a unique method to detect a carpet cloak and contribute to the design of novel optical devices, such as far field detectors for a nanoscale medium.

18.
J Nanosci Nanotechnol ; 13(2): 873-7, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23646533

RESUMEN

In this work, we propose a photonic quasicrystal waveguide, which contains a hollow core surrounded by coaxial dielectric quasiperiodic multilayer. Due to the self-similarity in the cladding structure, multiple omnidirectional photonic band gaps (PBGs) exist in the waveguide. The light waves with the frequencies within the omnidirectional PBGs are totally reflected, thereafter, the transport of multimodes is achieved in the quasiperiodic waveguide. Further, it is shown that the centre frequency and the width of the omnidirectional PBG can be tuned by the refractive indexes or the generations of the quasiperiodic sequence in the cladding multilayer. As a consequence, both the quality factor and the confinement performance of the waveguide can be significantly enhanced by decreasing the width of the omnidirectional PBGs. The investigations make it possible to design miniaturized multifunctional optical devices, such as on-chip narrowband waveguide-based filters and laser resonators.

19.
J Nanosci Nanotechnol ; 13(2): 1017-21, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23646562

RESUMEN

In this work, we investigate the coupling of surface plasmons and excited optical modes in metal/dielectric grating stacks theoretically and experimentally. We have observed three kinds of modes in these structures: the cavity mode, the propagated surface plasmon (PSP) mode and the localized surface plasmon (LSP) mode, which can enhance the optical transmission. Firstly, it is shown that the cavity mode is excited in the grating stacks. And the cavity mode has redshift if we enhance the thickness of metal layers, while it has blueshift when we increase the thickness of dielectric layers. The redshift of the cavity mode also occurs when the number of repeating layers is increased. Secondly, the PSP mode is also excited, which can be described by the effective permittivity method. It is found that the PSP modes are coupled with each other, which leads to a modified dispersion relation of surface plasmon polaritons (SPP). The theoretical analysis is in good agreement with the observed transmission enhancement in the grating stacks. And the coupling of PSPs also leads to a blueshift when the number of metal layers is increased. Thirdly, the LSP mode, generated in single metal strip, can also enhance the optical transmission of the grating stacks. Yet the transmission intensity induced by LSP decreases rapidly with increasing the number of metal layers. The investigations here may have potential applications in designing plasmonic metamaterials and subwavelength optical devices.

20.
J Nanosci Nanotechnol ; 13(2): 1237-40, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23646610

RESUMEN

In this work, we investigate the optical properties of a multilayer structure, where a SiO2 film is sandwiched by silver films with periodic array of sub-wavelength apertures. Due to the coupling of surface plasmons (SPs) between different layers, electric and magnetic resonances have been observed. By varying the thickness of the interlayer SiO2, we can modify relative phase of the SPs resonance and control the shifts of transmission peaks. Experimentally the multilayers are fabricated by magnetron sputtering and the array of apertures is milled by focused-ion-beam facility. The measured optical transmission spectra reasonably agree with our numerical calculation, which bases on three-dimensional finite-difference time-domain method. To understand the shifts of the peaks, we present a phenomenological explanation, considering the transmission peaks as energy levels, and the coupling of localized surface plasmons as perturbation. These results may have potential applications in designing plasmonic devices and tuning electromagnetic wave in nanophotonics.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda