Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 24(7)2023 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-37047446

RESUMEN

The color of rapeseed (Brassica napus L.) petal is usually yellow but can be milky-white to orange or pink. Thus, the petal color is a popular target in rapeseed breeding programs. In his study, metabolites and RNA were extracted from the yellow (Y), yellow/purple (YP), light purple (LP), and purple (P) rapeseed petals. Ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), RNA-Seq, and quantitative real-time (qRT-PCR) analyses were performed to analyze the expression correlation of differential metabolites and differential genes. A total of 223 metabolites were identified in the petals of the three purple and yellow rapeseed varieties by UPLC-MS/MS. A total of 20511 differentially expressed genes (DEGs) between P, LP, YP, versus Y plant petals were detected. This study focused on the co-regulation of 4898 differential genes in the three comparison groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) functional annotation and quantitative RT-PCR analysis showed that the expression of BnaA10g23330D (BnF3'H) affects the synthesis of downstream peonidin and delphinidin and is a key gene regulating the purple color of petals in B. napus. L. The gene may play a key role in regulating rapeseed flower color; however, further studies are needed to verify this. These results deepen our understanding of the molecular mechanisms underlying petal color and provide the theoretical and practical basis for flower breeding targeting petal color.


Asunto(s)
Brassica napus , Brassica napus/metabolismo , Cromatografía Liquida , Espectrometría de Masas en Tándem , Fitomejoramiento , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Color
2.
Int J Mol Sci ; 24(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37046988

RESUMEN

During the growth period of rapeseed, if there is continuous rainfall, it will easily lead to waterlogging stress, which will seriously affect the growth of rapeseed. Currently, the mechanisms of rapeseed resistance to waterlogging stress are largely unknown. In this study, the rapeseed (Brassica napus) inbred lines G230 and G218 were identified as waterlogging-tolerant rapeseed and waterlogging-sensitive rapeseed, respectively, through a potted waterlogging stress simulation and field waterlogging stress experiments. After six days of waterlogging stress at the seedling stage, the degree of leaf aging and root damage of the waterlogging-tolerant rapeseed G230 were lower than those of the waterlogging-sensitive rapeseed G218. A physiological analysis showed that waterlogging stress significantly increased the contents of malondialdehyde, soluble sugar, and hydrogen peroxide in rape leaves and roots. The transcriptomic and metabolomic analysis showed that the differential genes and the differential metabolites of waterlogging-tolerant rapeseed G230 were mainly enriched in the metabolic pathways, biosynthesis of secondary metabolites, flavonoid biosynthesis, and vitamin B6 metabolism. Compared to G218, the expression levels of some genes associated with flavonoid biosynthesis and vitamin B metabolism were higher in G230, such as CHI, DRF, LDOX, PDX1.1, and PDX2. Furthermore, some metabolites involved in flavonoid biosynthesis and vitamin B6 metabolism, such as naringenin and epiafzelechin, were significantly up-regulated in leaves of G230, while pyridoxine phosphate was only significantly down-regulated in roots and leaves of G218. Furthermore, foliar spraying of vitamin B6 can effectively improve the tolerance to waterlogging of G218 in the short term. These results indicate that flavonoid biosynthesis and vitamin B6 metabolism pathways play a key role in the waterlogging tolerance and hypoxia stress resistance of Brassica napus and provide new insights for improving the waterlogging tolerance and cultivating waterlogging-tolerant rapeseed varieties.


Asunto(s)
Brassica napus , Brassica rapa , Transcriptoma , Brassica napus/metabolismo , Perfilación de la Expresión Génica , Brassica rapa/genética , Metaboloma , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas , Estrés Fisiológico/genética
3.
PLoS One ; 18(4): e0284287, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37053132

RESUMEN

Cytoplasmic male sterile system (CMS) is one of the important methods for the utilization of heterosisin Brassica napus. The involvement of long non-coding RNAs (lncRNAs) in anther and pollen development in B.napus has been recognized, but there is little data on the involvement of lncRNAs in pollen abortion in different types of rapeseed CMS. The present study compared the cytological, physiological and biochemical characteristics of Nsa CMS (1258A) and Pol CMS (P5A) during pollen abortion, and high-throughput sequencing of flower buds of different sizes before and after pollen abortion. The results showed that insufficient energy supply was an important physiological basis for 1258A and P5A pollen abortion, and 1258A had excessive ROS (reactive oxygen species) accumulation in the stage of pollen abortion. Functional analysis showed that Starch and sucrose metabolism and Sulfur metabolism were significantly enriched before and after pollen abortion in 1258A and P5A, and a large number of genes were down-regulated. In 1258A, 227 lncRNAs had cis-targeting regulation, and 240 cis-target genes of the lncRNAs were identified. In P5A, 116 lncRNAs had cis-targeting regulation, and 101 cis-target genes of the lncRNAs were identified. There were five lncRNAs cis-target genes in 1258A and P5A during pollen abortion, and LOC106445716 encodes ß-D-glucopyranosyl abscisate ß-glucosidase and could regulate pollen abortion. Taken together, this study, provides a new perspective for lncRNAs to participate in the regulation of Nsa CMS and Pol CMS pollen abortion.


Asunto(s)
Brassica napus , ARN Largo no Codificante , Brassica napus/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Infertilidad Vegetal/genética , Regulación de la Expresión Génica de las Plantas , Polen/genética , Flores/genética , Perfilación de la Expresión Génica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda