Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Dev Biol ; 515: 139-150, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39038593

RESUMEN

Stem cell loss in aging and disease is associated with nuclear deformation. Yet, how nuclear shape influences stem cell homeostasis is poorly understood. We investigated this connection using Drosophila germline stem cells, as survival of these stem cells is compromised by dysfunction of the nuclear lamina, the extensive protein network that lines the inner nuclear membrane and gives shape to the nucleus. To induce nuclear distortion in germline stem cells, we used the GAL4-UAS system to increase expression of the permanently farnesylated nuclear lamina protein, Kugelkern, a rate limiting factor for nuclear growth. We show that elevated Kugelkern levels cause severe nuclear distortion in germline stem cells, including extensive thickening and lobulation of the nuclear envelope and nuclear lamina, as well as alteration of internal nuclear compartments. Despite these changes, germline stem cell number, proliferation, and female fertility are preserved, even as females age. Collectively, these data demonstrate that disruption of nuclear architecture does not cause a failure of germline stem cell survival or homeostasis, revealing that nuclear deformation does not invariably promote stem cell loss.


Asunto(s)
Proteínas de Drosophila , Drosophila melanogaster , Células Germinativas , Homeostasis , Lámina Nuclear , Células Madre , Animales , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Femenino , Células Germinativas/metabolismo , Drosophila melanogaster/metabolismo , Células Madre/metabolismo , Lámina Nuclear/metabolismo , Núcleo Celular/metabolismo , Proliferación Celular , Drosophila/metabolismo , Membrana Nuclear/metabolismo
2.
Nucleus ; 15(1): 2339214, 2024 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38597409

RESUMEN

The nuclear lamina (NL) changes composition for regulation of nuclear events. We investigated changes that occur in Drosophila oogenesis, revealing switches in NL composition during germ cell differentiation. Germline stem cells (GSCs) express only LamB and predominantly emerin, whereas differentiating nurse cells predominantly express LamC and emerin2. A change in LamC-specific localization also occurs, wherein phosphorylated LamC redistributes to the nuclear interior only in the oocyte, prior to transcriptional reactivation of the meiotic genome. These changes support existing concepts that LamC promotes differentiation, a premise that was tested. Remarkably ectopic LamC production in GSCs did not promote premature differentiation. Increased LamC levels in differentiating germ cells altered internal nuclear structure, increased RNA production, and reduced female fertility due to defects in eggshell formation. These studies suggest differences between Drosophila lamins are regulatory, not functional, and reveal an unexpected robustness to level changes of a major scaffolding component of the NL.


Asunto(s)
Proteínas de Drosophila , Lámina Nuclear , Animales , Femenino , Drosophila melanogaster/genética , Proteínas de Drosophila/genética , Drosophila , Diferenciación Celular , Células Germinativas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda