Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 140(4): 554-66, 2010 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-20178747

RESUMEN

Skeletal myogenesis, like hematopoiesis, occurs in successive developmental stages that involve different cell populations and expression of different genes. We show here that the transcription factor nuclear factor one X (Nfix), whose expression is activated by Pax7 in fetal muscle, in turn activates the transcription of fetal specific genes such as MCK and beta-enolase while repressing embryonic genes such as slow myosin. In the case of the MCK promoter, Nfix forms a complex with PKC theta that binds, phosphorylates, and activates MEF2A. Premature expression of Nfix activates fetal and suppresses embryonic genes in embryonic muscle, whereas muscle-specific ablation of Nfix prevents fetal and maintains embryonic gene expression in the fetus. Therefore, Nfix acts as a transcriptional switch from embryonic to fetal myogenesis.


Asunto(s)
Desarrollo de Músculos , Músculo Esquelético/embriología , Factores de Transcripción NFI/metabolismo , Transcripción Genética , Animales , Feto/metabolismo , Regulación del Desarrollo de la Expresión Génica , Humanos , Isoenzimas/metabolismo , Factores de Transcripción MEF2 , Ratones , Factores Reguladores Miogénicos/metabolismo , Factores de Transcripción NFATC/metabolismo , Factor de Transcripción PAX7/metabolismo , Fosfopiruvato Hidratasa , Proteína Quinasa C/metabolismo , Proteína Quinasa C-theta
2.
Int J Mol Sci ; 21(1)2019 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-31878120

RESUMEN

Critical limb ischemia is the most serious form of peripheral artery disease, characterized by severe functional consequences, difficult clinical management and reduced life expectancy. The goal of this study was to investigate the miR-210 role in the neo-angiogenic response after acute limb ischemia. Complementary approaches were used in a mouse model of hindlimb ischemia: miR-210 loss-of-function was obtained by administration of LNA-oligonucleotides anti-miR-210; for miR-210 gain-of-function, a doxycycline-inducible miR-210 transgenic mouse was used. We tested miR-210 ability to stimulate vascular regeneration following ischemia. We found that miR-210 was necessary and sufficient to stimulate blood perfusion recovery, as well as arteriolar and capillary density increase, in the ischemic muscle. To clarify the molecular events underpinning miR-210 pro-angiogenic action, the transcriptomic changes in ischemic muscles upon miR-210 blocking were analyzed. We found that miR-210 impacted the transcriptome significantly, regulating pathways and functions linked to vascular regeneration. In agreement with a pro-angiogenic role, miR-210 also improved cardiac function and left ventricular remodeling after myocardial infarction. Moreover, miR-210 blocking decreased capillary density in a Matrigel plug assay, indicating that miR-210 is necessary for angiogenesis independently of ischemia. Collectively, these data indicate that miR-210 plays a pivotal role in promoting vascular regeneration.


Asunto(s)
Miembro Posterior/patología , Isquemia/metabolismo , MicroARNs/metabolismo , Músculo Esquelético/metabolismo , Neovascularización Fisiológica/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Isquemia/genética , Masculino , Ratones , Ratones Endogámicos C57BL , MicroARNs/genética , Infarto del Miocardio/genética , Infarto del Miocardio/metabolismo , Neovascularización Fisiológica/genética
3.
Carcinogenesis ; 39(9): 1197-1206, 2018 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-30052815

RESUMEN

Background: The widely used genetically engineered mouse LSL-KrasG12D/+; LSL-Trp53R172H/+; Pdx-1-Cre, termed KPC, spontaneously develops pancreatic cancer mirroring all phases of the carcinogenesis but in asynchronous manner. Preclinical studies need defined criteria for the enrollment of the KPC sharing the same stage of carcinogenesis. Aim: To define a tumor-staging criteria using magnetic resonance (MR) and ultrasound (US) and then to correlate the imaging stage with overall survival of KPC mice. Methods: Forty KPC (2- to 5-month-old mice) were imaged by axial fat-saturated T2-weighted sequences at MR and by brightness mode US to establish criteria for tumor staging. Immunohistopathology was used to validate imaging. A second cohort of 25 KPC was used to correlate imaging stage with survival by Kaplan-Meier analysis. Results: We defined a four-class tumor staging system ranking from stages 1 to 4. Stage 1 was described as radiologically healthy pancreas; precursor lesions were detectable in histology only. Cystic papillary neoplasms, besides other premalignant alterations, marked stage 2 in the absence of cancer nodules. Stages 3 and 4 identified mice affected by overt pancreatic cancer with size <5 or ≥5 mm, respectively. Regarding the prognosis, this staging system correlated with disease-related mortality whatever may be the KPC age when they staged. Conclusion: This imaging-based four-class tumor staging is an effective and safe method to stage pancreatic cancer development in KPC. As a result, regardless of their age, KPC mice can be synchronized based on prognosis or on a specific phase of tumorigenesis, such as the early but already radiologically detectable one (stage 2).


Asunto(s)
Imagen por Resonancia Magnética/métodos , Neoplasias Pancreáticas , Ultrasonografía/métodos , Animales , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estadificación de Neoplasias/métodos , Páncreas/fisiología , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/diagnóstico por imagen , Neoplasias Pancreáticas/patología , Lesiones Precancerosas/patología
4.
Adv Funct Mater ; 27(36)2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28979182

RESUMEN

NGR (asparagine-glycine-arginine) is a tumor vasculature-homing peptide motif widely used for the functionalization of drugs, nanomaterials and imaging compounds for cancer treatment and diagnosis. Unfortunately, this motif has a strong propensity to undergo rapid deamidation. This reaction, which converts NGR into isoDGR, is associated with receptor switching from CD13 to integrins, with potentially important manufacturing, pharmacological and toxicological implications. It is found that glycine N-methylation of NGR-tagged nanocarriers completely prevents asparagine deamidation without impairing CD13 recognition. Studies in animal models have shown that the methylated NGR motif can be exploited for delivering radiolabeled compounds and nanocarriers, such as tumor necrosis factor-α (TNF)-bearing nanogold and liposomal doxorubicin, to tumors with improved selectivity. These findings suggest that this NGR derivative is a stable and efficient tumor-homing ligand that can be used for delivering functional nanomaterials to tumor vasculature.

5.
Nat Cell Biol ; 9(3): 255-67, 2007 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-17293855

RESUMEN

Cells derived from blood vessels of human skeletal muscle can regenerate skeletal muscle, similarly to embryonic mesoangioblasts. However, adult cells do not express endothelial markers, but instead express markers of pericytes, such as NG2 proteoglycan and alkaline phosphatase (ALP), and can be prospectively isolated from freshly dissociated ALP(+) cells. Unlike canonical myogenic precursors (satellite cells), pericyte-derived cells express myogenic markers only in differentiated myotubes, which they form spontaneously with high efficiency. When transplanted into severe combined immune deficient-X-linked, mouse muscular dystrophy (scid-mdx) mice, pericyte-derived cells colonize host muscle and generate numerous fibres expressing human dystrophin. Similar cells isolated from Duchenne patients, and engineered to express human mini-dystrophin, also give rise to many dystrophin-positive fibres in vivo. These data show that myogenic precursors, distinct from satellite cells, are associated with microvascular walls in the human skeletal muscle, may represent a correlate of embryonic 'mesoangioblasts' present after birth and may be a promising candidate for future cell-therapy protocols in patients.


Asunto(s)
Células Madre Adultas/citología , Músculo Esquelético/citología , Pericitos/citología , Regeneración/fisiología , Células Satélite del Músculo Esquelético/citología , Adolescente , Adulto , Células Madre Adultas/metabolismo , Células Madre Adultas/trasplante , Anciano , Animales , Antígenos CD/análisis , Técnicas de Cultivo de Célula/métodos , Niño , Preescolar , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos mdx , Ratones Desnudos , Ratones SCID , Persona de Mediana Edad , Proteínas Musculares/análisis , Proteínas Musculares/genética , Músculo Esquelético/química , Músculo Esquelético/fisiología , Distrofia Muscular de Duchenne/fisiopatología , Distrofia Muscular de Duchenne/cirugía , Pericitos/química , Pericitos/trasplante , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/trasplante , Trasplante de Células Madre/métodos , Resultado del Tratamiento
7.
EMBO Mol Med ; 16(4): 927-944, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38438561

RESUMEN

Cell therapy for muscular dystrophy has met with limited success, mainly due to the poor engraftment of donor cells, especially in fibrotic muscle at an advanced stage of the disease. We developed a cell-mediated exon skipping that exploits the multinucleated nature of myofibers to achieve cross-correction of resident, dystrophic nuclei by the U7 small nuclear RNA engineered to skip exon 51 of the dystrophin gene. We observed that co-culture of genetically corrected human DMD myogenic cells (but not of WT cells) with their dystrophic counterparts at a ratio of either 1:10 or 1:30 leads to dystrophin production at a level several folds higher than what predicted by simple dilution. This is due to diffusion of U7 snRNA to neighbouring dystrophic resident nuclei. When transplanted into NSG-mdx-Δ51mice carrying a mutation of exon 51, genetically corrected human myogenic cells produce dystrophin at much higher level than WT cells, well in the therapeutic range, and lead to force recovery even with an engraftment of only 3-5%. This level of dystrophin production is an important step towards clinical efficacy for cell therapy.


Asunto(s)
Distrofina , Distrofia Muscular de Duchenne , Animales , Humanos , Ratones , Modelos Animales de Enfermedad , Distrofina/genética , Exones , Vectores Genéticos , Ratones Endogámicos mdx , Músculos , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/terapia
8.
Front Immunol ; 15: 1315283, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38510235

RESUMEN

Background: In adoptive T cell therapy, the long term therapeutic benefits in patients treated with engineered tumor specific T cells are limited by the lack of long term persistence of the infused cellular products and by the immunosuppressive mechanisms active in the tumor microenvironment. Exhausted T cells infiltrating the tumor are characterized by loss of effector functions triggered by multiple inhibitory receptors (IRs). In patients, IR blockade reverts T cell exhaustion but has low selectivity, potentially unleashing autoreactive clones and resulting in clinical autoimmune side effects. Furthermore, loss of long term protective immunity in cell therapy has been ascribed to the effector memory phenotype of the infused cells. Methods: We simultaneously redirected T cell specificity towards the NY-ESO-1 antigen via TCR gene editing (TCRED) and permanently disrupted LAG3, TIM-3 or 2B4 genes (IRKO) via CRISPR/Cas9 in a protocol to expand early differentiated long-living memory stem T cells. The effector functions of the TCRED-IRKO and IR competent (TCRED-IRCOMP) cells were tested in short-term co-culture assays and under a chronic stimulation setting in vitro. Finally, the therapeutic efficacy of the developed cellular products were evaluated in multiple myeloma xenograft models. Results: We show that upon chronic stimulation, TCRED-IRKO cells are superior to TCRED-IRCOMP cells in resisting functional exhaustion through different mechanisms and efficiently eliminate cancer cells upon tumor re-challenge in vivo. Our data indicate that TIM-3 and 2B4-disruption preserve T-cell degranulation capacity, while LAG-3 disruption prevents the upregulation of additional inhibitory receptors in T cells. Conclusion: These results highlight that TIM-3, LAG-3, and 2B4 disruptions increase the therapeutic benefit of tumor specific cellular products and suggest distinct, non-redundant roles for IRs in anti-tumor responses.


Asunto(s)
Linfocitos T CD8-positivos , Mieloma Múltiple , Humanos , Receptor 2 Celular del Virus de la Hepatitis A/genética , Antígenos de Neoplasias/genética , Receptores de Antígenos de Linfocitos T/genética , Microambiente Tumoral
9.
Dev Biol ; 365(1): 91-100, 2012 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-22370001

RESUMEN

Embryonic mesoangioblasts are the in vitro counterpart of vessel-associated progenitors, able to differentiate into different mesoderm cell types. To investigate signals recruiting these progenitors to a skeletal myogenic fate, we developed an in vitro assay, based upon co-culture of E11.5 dorsal aorta (from MLC3F-nLacZ transgenic embryos, expressing nuclear beta galactosidase only in striated muscle) with differentiating C2C12 or primary myoblasts. Under these conditions muscle differentiation from cells originating from the vessel can be quantified by counting the number of beta gal+nuclei. Results indicated that Noggin (but not Follistatin, Chordin or Gremlin) stimulates while BMP2/4 inhibits myogenesis from dorsal aorta progenitors; neutralizing antibodies and shRNA greatly reduce these effects. In contrast, TGF-ß1, VEGF, Wnt7A, Wnt3A, bFGF, PDGF-BB and IGF1 have no effect. Sorting experiments indicated that the majority of these myogenic progenitors express the pericyte marker NG2. Moreover they are abundant in the thoracic segment at E10.5 and in the iliac bifurcation at E11.5 suggesting the occurrence of a cranio-caudal wave of competent cells along the aorta. BMP2 is expressed in the dorsal aorta and Noggin in newly formed muscle fibers suggesting that these two tissues compete to recruit mesoderm cells to a myogenic or to a perithelial fate in the developing fetal muscle.


Asunto(s)
Bioensayo/métodos , Proteínas Portadoras/fisiología , Diferenciación Celular , Desarrollo de Músculos , Músculo Esquelético/citología , Miocitos del Músculo Liso/citología , Animales , Aorta/citología , Proteínas Morfogenéticas Óseas/fisiología , Comunicación Celular , Técnicas de Cocultivo , Mesodermo/citología , Ratones
10.
Cancer Res ; 83(2): 195-218, 2023 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-36409826

RESUMEN

Glioblastoma (GBM) is a common and deadly form of brain tumor in adults. Dysregulated metabolism in GBM offers an opportunity to deploy metabolic interventions as precise therapeutic strategies. To identify the molecular drivers and the modalities by which different molecular subgroups of GBM exploit metabolic rewiring to sustain tumor progression, we interrogated the transcriptome, the metabolome, and the glycoproteome of human subgroup-specific GBM sphere-forming cells (GSC). L-fucose abundance and core fucosylation activation were elevated in mesenchymal (MES) compared with proneural GSCs; this pattern was retained in subgroup-specific xenografts and in subgroup-affiliated human patient samples. Genetic and pharmacological inhibition of core fucosylation significantly reduced tumor growth in MES GBM preclinical models. Liquid chromatography-mass spectrometry (LC-MS)-based glycoproteomic screening indicated that most MES-restricted core-fucosylated proteins are involved in therapeutically relevant GBM pathological processes, such as extracellular matrix interaction, cell adhesion, and integrin-mediated signaling. Selective L-fucose accumulation in MES GBMs was observed using preclinical minimally invasive PET, implicating this metabolite as a potential subgroup-restricted biomarker.Overall, these findings indicate that L-fucose pathway activation in MES GBM is a subgroup-specific dependency that could provide diagnostic markers and actionable therapeutic targets. SIGNIFICANCE: Metabolic characterization of subgroup-specific glioblastoma (GBM) sphere-forming cells identifies the L-fucose pathway as a vulnerability restricted to mesenchymal GBM, disclosing a potential precision medicine strategy for targeting cancer metabolism.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patología , Fucosa/metabolismo , Transducción de Señal , Neoplasias Encefálicas/patología , Células Madre Neoplásicas/patología , Línea Celular Tumoral
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda