Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Nat Rev Mol Cell Biol ; 25(3): 223-245, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38001393

RESUMEN

Every cell must satisfy basic requirements for nutrient sensing, utilization and recycling through macromolecular breakdown to coordinate programmes for growth, repair and stress adaptation. The lysosome orchestrates these key functions through the synchronised interplay between hydrolytic enzymes, nutrient transporters and signalling factors, which together enable metabolic coordination with other organelles and regulation of specific gene expression programmes. In this Review, we discuss recent findings on lysosome-dependent signalling pathways, focusing on how the lysosome senses nutrient availability through its physical and functional association with mechanistic target of rapamycin complex 1 (mTORC1) and how, in response, the microphthalmia/transcription factor E (MiT/TFE) transcription factors exert feedback regulation on lysosome biogenesis. We also highlight the emerging interactions of lysosomes with other organelles, which contribute to cellular homeostasis. Lastly, we discuss how lysosome dysfunction contributes to diverse disease pathologies and how inherited mutations that compromise lysosomal hydrolysis, transport or signalling components lead to multi-organ disorders with severe metabolic and neurological impact. A deeper comprehension of lysosomal composition and function, at both the cellular and organismal level, may uncover fundamental insights into human physiology and disease.


Asunto(s)
Lisosomas , Transducción de Señal , Humanos , Transducción de Señal/fisiología , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Lisosomas/metabolismo , Homeostasis/fisiología , Autofagia/fisiología
2.
Annu Rev Cell Dev Biol ; 32: 223-253, 2016 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-27501449

RESUMEN

The lysosome has long been viewed as the recycling center of the cell. However, recent discoveries have challenged this simple view and have established a central role of the lysosome in nutrient-dependent signal transduction. The degradative role of the lysosome and its newly discovered signaling functions are not in conflict but rather cooperate extensively to mediate fundamental cellular activities such as nutrient sensing, metabolic adaptation, and quality control of proteins and organelles. Moreover, lysosome-based signaling and degradation are subject to reciprocal regulation. Transcriptional programs of increasing complexity control the biogenesis, composition, and abundance of lysosomes and fine-tune their activity to match the evolving needs of the cell. Alterations in these essential activities are, not surprisingly, central to the pathophysiology of an ever-expanding spectrum of conditions, including storage disorders, neurodegenerative diseases, and cancer. Thus, unraveling the functions of this fascinating organelle will contribute to our understanding of the fundamental logic of metabolic organization and will point to novel therapeutic avenues in several human diseases.


Asunto(s)
Lisosomas/metabolismo , Animales , Enfermedad , Exocitosis , Humanos , Transducción de Señal
3.
Mol Cell ; 82(8): 1514-1527, 2022 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-35452618

RESUMEN

As one of the two highly conserved cellular degradation systems, autophagy plays a critical role in regulation of protein, lipid, and organelle quality control and cellular homeostasis. This evolutionarily conserved pathway singles out intracellular substrates for elimination via encapsulation within a double-membrane vesicle and delivery to the lysosome for degradation. Multiple cancers disrupt normal regulation of autophagy and hijack its degradative ability to remodel their proteome, reprogram their metabolism, and adapt to environmental challenges, making the autophagy-lysosome system a prime target for anti-cancer interventions. Here, we discuss the roles of autophagy in tumor progression, including cancer-specific mechanisms of autophagy regulation and the contribution of tumor and host autophagy in metabolic regulation, immune evasion, and malignancy. We further discuss emerging proteomics-based approaches for systematic profiling of autophagosome-lysosome composition and contents. Together, these approaches are uncovering new features and functions of autophagy, leading to more effective strategies for targeting this pathway in cancer.


Asunto(s)
Autofagosomas , Neoplasias , Autofagosomas/metabolismo , Autofagia/fisiología , Humanos , Lisosomas/metabolismo , Neoplasias/patología , Control de Calidad
4.
Nature ; 581(7806): 100-105, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32376951

RESUMEN

Immune evasion is a major obstacle for cancer treatment. Common mechanisms of evasion include impaired antigen presentation caused by mutations or loss of heterozygosity of the major histocompatibility complex class I (MHC-I), which has been implicated in resistance to immune checkpoint blockade (ICB) therapy1-3. However, in pancreatic ductal adenocarcinoma (PDAC), which is resistant to most therapies including ICB4, mutations that cause loss of MHC-I are rarely found5 despite the frequent downregulation of MHC-I expression6-8. Here we show that, in PDAC, MHC-I molecules are selectively targeted for lysosomal degradation by an autophagy-dependent mechanism that involves the autophagy cargo receptor NBR1. PDAC cells display reduced expression of MHC-I at the cell surface and instead demonstrate predominant localization within autophagosomes and lysosomes. Notably, inhibition of autophagy restores surface levels of MHC-I and leads to improved antigen presentation, enhanced anti-tumour T cell responses and reduced tumour growth in syngeneic host mice. Accordingly, the anti-tumour effects of autophagy inhibition are reversed by depleting CD8+ T cells or reducing surface expression of MHC-I. Inhibition of autophagy, either genetically or pharmacologically with chloroquine, synergizes with dual ICB therapy (anti-PD1 and anti-CTLA4 antibodies), and leads to an enhanced anti-tumour immune response. Our findings demonstrate a role for enhanced autophagy or lysosome function in immune evasion by selective targeting of MHC-I molecules for degradation, and provide a rationale for the combination of autophagy inhibition and dual ICB therapy as a therapeutic strategy against PDAC.


Asunto(s)
Adenocarcinoma/inmunología , Autofagia/inmunología , Carcinoma Ductal Pancreático/inmunología , Antígenos de Histocompatibilidad Clase I/inmunología , Antígenos de Histocompatibilidad Clase I/metabolismo , Neoplasias Pancreáticas/inmunología , Escape del Tumor/inmunología , Adenocarcinoma/tratamiento farmacológico , Adenocarcinoma/genética , Adenocarcinoma/patología , Animales , Presentación de Antígeno/efectos de los fármacos , Presentación de Antígeno/inmunología , Autofagia/efectos de los fármacos , Autofagia/genética , Linfocitos T CD8-positivos/efectos de los fármacos , Linfocitos T CD8-positivos/inmunología , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Puntos de Control del Ciclo Celular/inmunología , Línea Celular Tumoral , Cloroquina/farmacología , Femenino , Antígenos de Histocompatibilidad Clase I/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Masculino , Ratones , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Escape del Tumor/efectos de los fármacos
5.
EMBO J ; 40(19): e108863, 2021 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-34459017

RESUMEN

Autophagy is a core molecular pathway for the preservation of cellular and organismal homeostasis. Pharmacological and genetic interventions impairing autophagy responses promote or aggravate disease in a plethora of experimental models. Consistently, mutations in autophagy-related processes cause severe human pathologies. Here, we review and discuss preclinical data linking autophagy dysfunction to the pathogenesis of major human disorders including cancer as well as cardiovascular, neurodegenerative, metabolic, pulmonary, renal, infectious, musculoskeletal, and ocular disorders.


Asunto(s)
Autofagia , Susceptibilidad a Enfermedades , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Autofagia/inmunología , Biomarcadores , Regulación de la Expresión Génica , Predisposición Genética a la Enfermedad , Homeostasis , Interacciones Huésped-Patógeno , Humanos , Especificidad de Órganos , Transducción de Señal
6.
PLoS Pathog ; 18(4): e1010411, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35377915

RESUMEN

The recent global Zika epidemics have revealed the significant threat that mosquito-borne viruses pose. There are currently no effective vaccines or prophylactics to prevent Zika virus (ZIKV) infection. Limiting exposure to infected mosquitoes is the best way to reduce disease incidence. Recent studies have focused on targeting mosquito reproduction and immune responses to reduce transmission. Previous work has evaluated the effect of insulin signaling on antiviral JAK/STAT and RNAi in vector mosquitoes. Specifically, insulin-fed mosquitoes resulted in reduced virus replication in an RNAi-independent, ERK-mediated JAK/STAT-dependent mechanism. In this work, we demonstrate that targeting insulin signaling through the repurposing of small molecule drugs results in the activation of both RNAi and JAK/STAT antiviral pathways. ZIKV-infected Aedes aegypti were fed blood containing demethylasterriquinone B1 (DMAQ-B1), a potent insulin mimetic, in combination with AKT inhibitor VIII. Activation of this coordinated response additively reduced ZIKV levels in Aedes aegypti. This effect included a quantitatively greater reduction in salivary gland ZIKV levels up to 11 d post-bloodmeal ingestion, relative to single pathway activation. Together, our study indicates the potential for field delivery of these small molecules to substantially reduce virus transmission from mosquito to human. As infections like Zika virus are becoming more burdensome and prevalent, understanding how to control this family of viruses in the insect vector is an important issue in public health.


Asunto(s)
Aedes , Infección por el Virus Zika , Virus Zika , Animales , Antivirales/metabolismo , Humanos , Insectos Vectores , Insulina/genética , Insulina/metabolismo , Mosquitos Vectores , Interferencia de ARN , Virus Zika/genética
7.
PLoS Pathog ; 18(11): e1010930, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36318584

RESUMEN

The antiviral endoribonuclease, RNase L, is activated by the mammalian innate immune response to destroy host and viral RNA to ultimately reduce viral gene expression. Herein, we show that RNase L and RNase L-mediated mRNA decay are primarily localized to the cytoplasm. Consequently, RNA-binding proteins (RBPs) translocate from the cytoplasm to the nucleus upon RNase L activation due to the presence of intact nuclear RNA. The re-localization of RBPs to the nucleus coincides with global alterations to RNA processing in the nucleus. While affecting many host mRNAs, these alterations are pronounced in mRNAs encoding type I and type III interferons and correlate with their retention in the nucleus and reduction in interferon protein production. Similar RNA processing defects also occur during infection with either dengue virus or SARS-CoV-2 when RNase L is activated. These findings reveal that the distribution of RBPs between the nucleus and cytosol is dictated by the availability of RNA in each compartment. Thus, viral infections that trigger RNase L-mediated cytoplasmic RNA in the cytoplasm also alter RNA processing in the nucleus, resulting in an ingenious multi-step immune block to protein biogenesis.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , ARN Mensajero/genética , ARN Mensajero/metabolismo , COVID-19/genética , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Citoplasma/metabolismo , Mamíferos
8.
J Fluoresc ; 34(2): 561-570, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37310590

RESUMEN

The COVID-19 pandemic has created a worldwide public health crisis that has since resulted in 6.8 million reported deaths. The pandemic prompted the immediate response of researchers around the world to engage in rapid vaccine development, surveillance programs, and antiviral testing, which resulted in the delivery of multiple vaccines and repurposed antiviral drug candidates. However, the emergence of new highly transmissible SARS-CoV-2 variants has renewed the desire for discovering new antiviral drug candidates with high efficacy against the emerging variants of concern. Traditional antiviral testing methods employ the plaque-reduction neutralization tests (PRNTs), plaque assays, or RT-PCR analysis, but each assay can be tedious and time-consuming, requiring 2-3 days to complete the initial antiviral assay in biologically relevant cells, and then 3-4 days to visualize and count plaques in Vero cells, or to complete cell extractions and PCR analysis. In recent years, plate-based image cytometers have demonstrated high-throughput vaccine screening methods, which can be adopted for screening potential antiviral drug candidates. In this work, we developed a high-throughput antiviral testing method employing the Celigo Image Cytometer to investigate the efficacy of antiviral drug candidates on SARS-CoV-2 infectivity using a fluorescent reporter virus and their safety by measuring the cytotoxicity effects on the healthy host cell line using fluorescent viability stains. Compared to traditional methods, the assays defined here eliminated on average 3-4 days from our standard processing time for antiviral testing. Moreover, we were able to utilize human cell lines directly that are not typically amenable to PRNT or plaque assays. The Celigo Image Cytometer can provide an efficient and robust method to rapidly identify potential antiviral drugs to effectively combat the rapidly spreading SARS-CoV-2 virus and its variants during the pandemic.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Chlorocebus aethiops , Humanos , Células Vero , Pandemias , Ensayos Analíticos de Alto Rendimiento/métodos , Antivirales/farmacología
9.
Cell ; 136(6): 1110-21, 2009 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-19303853

RESUMEN

The recent identification of several novel endocytic compartments has challenged our current understanding of the topological and functional organization of the endocytic pathway. Using quantitative single vesicle imaging and acute manipulation of phosphoinositides we show that APPL endosomes, which participate in growth factor receptor trafficking and signaling, represent an early endocytic intermediate common to a subset of clathrin derived endocytic vesicles and macropinosomes. Most APPL endosomes are precursors of classical PI3P positive endosomes, and PI3P plays a critical role in promoting this conversion. Depletion of PI3P causes a striking reversion of Rab5 positive endosomes to the APPL stage, and results in enhanced growth factor signaling. These findings reveal a surprising plasticity of the early endocytic pathway. Importantly, PI3P functions as a switch to dynamically regulate maturation and signaling of APPL endosomes.


Asunto(s)
Endosomas/metabolismo , Fosfatidilinositoles/metabolismo , Animales , Células COS , Chlorocebus aethiops , Vesículas Cubiertas por Clatrina/metabolismo , Endocitosis , Transducción de Señal
10.
PLoS Genet ; 17(6): e1009606, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34138859

RESUMEN

Pyrethroids are one of the few classes of insecticides available to control Aedes aegypti, the major vector of dengue, chikungunya, and Zika viruses. Unfortunately, evolving mechanisms of pyrethroid resistance in mosquito populations threaten our ability to control disease outbreaks. Two common pyrethroid resistance mechanisms occur in Ae. aegypti: 1) knockdown resistance, which involves amino acid substitutions at the pyrethroid target site-the voltage-gated sodium channel (VGSC)-and 2) enhanced metabolism by detoxification enzymes. When a heterogeneous population of mosquitoes is exposed to pyrethroids, different responses occur. During exposure, a proportion of mosquitoes exhibit immediate knockdown, whereas others are not knocked-down and are designated knockdown resistant (kdr). When these individuals are removed from the source of insecticide, the knocked-down mosquitoes can either remain in this status and lead to dead or recover within a few hours. The proportion of these phenotypic responses is dependent on the pyrethroid concentration and the genetic background of the population tested. In this study, we sequenced and performed pairwise genome comparisons between kdr, recovered, and dead phenotypes in a pyrethroid-resistant colony from Tapachula, Mexico. We identified single-nucleotide polymorphisms (SNPs) associated with each phenotype and identified genes that are likely associated with the mechanisms of pyrethroid resistance, including detoxification, the cuticle, and insecticide target sites. We identified high association between kdr and mutations at VGSC and moderate association with additional insecticide target site, detoxification, and cuticle protein coding genes. Recovery was associated with cuticle proteins, the voltage-dependent calcium channel, and a different group of detoxification genes. We provide a list of detoxification genes under directional selection in this field-resistant population. Their functional roles in pyrethroid metabolism and their potential uses as genomic markers of resistance require validation.


Asunto(s)
Aedes/efectos de los fármacos , Inactivación Metabólica/genética , Proteínas de Insectos/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Permetrina/farmacología , Canales de Sodio Activados por Voltaje/genética , Aedes/genética , Aedes/metabolismo , Sustitución de Aminoácidos , Animales , Expresión Génica , Perfilación de la Expresión Génica , Proteínas de Insectos/clasificación , Proteínas de Insectos/metabolismo , Insecticidas/metabolismo , Anotación de Secuencia Molecular , Mosquitos Vectores , Mutación , Permetrina/metabolismo , Fenotipo , Polimorfismo de Nucleótido Simple , Canales de Sodio Activados por Voltaje/metabolismo
11.
RNA ; 27(11): 1318-1329, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34315815

RESUMEN

The transcriptional induction of interferon (IFN) genes is a key feature of the mammalian antiviral response that limits viral replication and dissemination. A hallmark of severe COVID-19 disease caused by SARS-CoV-2 is the low presence of IFN proteins in patient serum despite elevated levels of IFN-encoding mRNAs, indicative of post-transcriptional inhibition of IFN protein production. Here, we performed single-molecule RNA visualization to examine the expression and localization of host mRNAs during SARS-CoV-2 infection. Our data show that the biogenesis of type I and type III IFN mRNAs is inhibited at multiple steps during SARS-CoV-2 infection. First, translocation of the interferon regulatory factor 3 (IRF3) transcription factor to the nucleus is limited in response to SARS-CoV-2, indicating that SARS-CoV-2 inhibits RLR-MAVS signaling and thus weakens transcriptional induction of IFN genes. Second, we observed that IFN mRNAs primarily localize to the site of transcription in most SARS-CoV-2 infected cells, suggesting that SARS-CoV-2 either inhibits the release of IFN mRNAs from their sites of transcription and/or triggers decay of IFN mRNAs in the nucleus upon exiting the site of transcription. Lastly, nuclear-cytoplasmic transport of IFN mRNAs is inhibited during SARS-CoV-2 infection, which we propose is a consequence of widespread degradation of host cytoplasmic basal mRNAs in the early stages of SARS-CoV-2 replication by the SARS-CoV-2 Nsp1 protein, as well as the host antiviral endoribonuclease, RNase L. Importantly, IFN mRNAs can escape SARS-CoV-2-mediated degradation if they reach the cytoplasm, making rescue of mRNA export a viable means for promoting the immune response to SARS-CoV-2.


Asunto(s)
COVID-19/genética , Interacciones Huésped-Patógeno/genética , Interferones/genética , Estabilidad del ARN , SARS-CoV-2/patogenicidad , Proteínas no Estructurales Virales/genética , Células A549 , Enzima Convertidora de Angiotensina 2/genética , Enzima Convertidora de Angiotensina 2/metabolismo , COVID-19/virología , Línea Celular , Endorribonucleasas/genética , Endorribonucleasas/metabolismo , Humanos , Hibridación Fluorescente in Situ/métodos , Factor 3 Regulador del Interferón/genética , Factor 3 Regulador del Interferón/metabolismo , Interferones/metabolismo , ARN Mensajero/metabolismo , Imagen Individual de Molécula
12.
Cell ; 132(5): 807-17, 2008 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-18329367

RESUMEN

BAR superfamily domains shape membranes through poorly understood mechanisms. We solved structures of F-BAR modules bound to flat and curved bilayers using electron (cryo)microscopy. We show that membrane tubules form when F-BARs polymerize into helical coats that are held together by lateral and tip-to-tip interactions. On gel-state membranes or after mutation of residues along the lateral interaction surface, F-BARs adsorb onto bilayers via surfaces other than their concave face. We conclude that membrane binding is separable from membrane bending, and that imposition of the module's concave surface forces fluid-phase bilayers to bend locally. Furthermore, exposure of the domain's lateral interaction surface through a change in orientation serves as the crucial trigger for assembly of the helical coat and propagation of bilayer bending. The geometric constraints and sequential assembly of the helical lattice explain how F-BAR and classical BAR domains segregate into distinct microdomains, and provide insight into the spatial regulation of membrane invagination.


Asunto(s)
Membrana Celular/química , Membrana Celular/metabolismo , Proteínas de la Membrana/química , Proteínas de la Membrana/metabolismo , Animales , Células COS , Proteínas Portadoras/química , Proteínas Portadoras/genética , Proteínas Portadoras/metabolismo , Membrana Celular/ultraestructura , Chlorocebus aethiops , Microscopía por Crioelectrón , Dinaminas/metabolismo , Proteínas de Unión a Ácidos Grasos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Liposomas/química , Proteínas de la Membrana/genética , Proteínas de la Membrana/ultraestructura , Proteínas Asociadas a Microtúbulos/química , Proteínas Asociadas a Microtúbulos/genética , Proteínas Asociadas a Microtúbulos/metabolismo , Antígenos de Histocompatibilidad Menor , Modelos Biológicos , Modelos Moleculares , Estructura Terciaria de Proteína , Transfección
13.
J Gen Virol ; 102(8)2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34410903

RESUMEN

An infectious agent's pathogenic and transmission potential is heavily influenced by early events during the asymptomatic or subclinical phase of disease. During this phase, the presence of infectious agent may be relatively low. An important example of this is Zika virus (ZIKV), which can cross the placenta and infect the foetus, even in mothers with subclinical infections. These subclinical infections represent roughly 80 % of all human infections. Initial ZIKV pathogenesis studies were performed in type I interferon receptor (IFNAR) knockout mice. Blunting the interferon response resulted in robust infectivity, and increased the utility of mice to model ZIKV infections. However, due to the removal of the interferon response, the use of these models impedes full characterization of immune responses to ZIKV-related pathologies. Moreover, IFNAR-deficient models represent severe disease whereas less is known regarding subclinical infections. Investigation of the anti-viral immune response elicited at the maternal-foetal interface is critical to fully understand mechanisms involved in foetal infection, foetal development, and disease processes recognized to occur during subclinical maternal infections. Thus, immunocompetent experimental models that recapitulate natural infections are needed. We have established subclinical intravaginal ZIKV infections in mice and guinea pigs. We found that these infections resulted in: the presence of both ZIKV RNA transcripts and infectious virus in maternal and placental tissues, establishment of foetal infections and ZIKV-mediated CXCL10 expression. These models will aid in discerning the mechanisms of subclinical ZIKV mother-to-offspring transmission, and by extension can be used to investigate other maternal infections that impact foetal development.


Asunto(s)
Feto , Placenta , Complicaciones Infecciosas del Embarazo , Infección por el Virus Zika/virología , Virus Zika , Animales , Chlorocebus aethiops , Femenino , Feto/inmunología , Feto/virología , Cobayas , Humanos , Transmisión Vertical de Enfermedad Infecciosa , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Placenta/inmunología , Placenta/virología , Embarazo , Complicaciones Infecciosas del Embarazo/inmunología , Complicaciones Infecciosas del Embarazo/virología , Células Vero , Virus Zika/inmunología , Virus Zika/patogenicidad
14.
Nature ; 524(7565): 361-5, 2015 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-26168401

RESUMEN

Activation of cellular stress response pathways to maintain metabolic homeostasis is emerging as a critical growth and survival mechanism in many cancers. The pathogenesis of pancreatic ductal adenocarcinoma (PDA) requires high levels of autophagy, a conserved self-degradative process. However, the regulatory circuits that activate autophagy and reprogram PDA cell metabolism are unknown. Here we show that autophagy induction in PDA occurs as part of a broader transcriptional program that coordinates activation of lysosome biogenesis and function, and nutrient scavenging, mediated by the MiT/TFE family of transcription factors. In human PDA cells, the MiT/TFE proteins--MITF, TFE3 and TFEB--are decoupled from regulatory mechanisms that control their cytoplasmic retention. Increased nuclear import in turn drives the expression of a coherent network of genes that induce high levels of lysosomal catabolic function essential for PDA growth. Unbiased global metabolite profiling reveals that MiT/TFE-dependent autophagy-lysosome activation is specifically required to maintain intracellular amino acid pools. These results identify the MiT/TFE proteins as master regulators of metabolic reprogramming in pancreatic cancer and demonstrate that transcriptional activation of clearance pathways converging on the lysosome is a novel hallmark of aggressive malignancy.


Asunto(s)
Autofagia/genética , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Regulación Neoplásica de la Expresión Génica , Lisosomas/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Factores de Transcripción/metabolismo , Transporte Activo de Núcleo Celular , Aminoácidos/metabolismo , Animales , Factores de Transcripción Básicos con Cremalleras de Leucinas y Motivos Hélice-Asa-Hélice/metabolismo , Carcinoma Ductal Pancreático/patología , Línea Celular Tumoral , Metabolismo Energético , Femenino , Xenoinjertos , Homeostasis , Humanos , Lisosomas/genética , Ratones , Factor de Transcripción Asociado a Microftalmía/metabolismo , Trasplante de Neoplasias , Neoplasias Pancreáticas/genética , Transcripción Genética
15.
PLoS Pathog ; 14(8): e1007261, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-30118512

RESUMEN

Positive strand RNA viruses, such as dengue virus type 2 (DENV2) expand and structurally alter ER membranes to optimize cellular communication pathways that promote viral replicative needs. These complex rearrangements require significant protein scaffolding as well as changes to the ER chemical composition to support these structures. We have previously shown that the lipid abundance and repertoire of host cells are significantly altered during infection with these viruses. Specifically, enzymes in the lipid biosynthesis pathway such as fatty acid synthase (FAS) are recruited to viral replication sites by interaction with viral proteins and displayed enhanced activities during infection. We have now identified that events downstream of FAS (fatty acid desaturation) are critical for virus replication. In this study we screened enzymes in the unsaturated fatty acid (UFA) biosynthetic pathway and found that the rate-limiting enzyme in monounsaturated fatty acid biosynthesis, stearoyl-CoA desaturase 1 (SCD1), is indispensable for DENV2 replication. The enzymatic activity of SCD1, was required for viral genome replication and particle release, and it was regulated in a time-dependent manner with a stringent requirement early during viral infection. As infection progressed, SCD1 protein expression levels were inversely correlated with the concentration of viral dsRNA in the cell. This modulation of SCD1, coinciding with the stage of viral replication, highlighted its function as a trigger of early infection and an enzyme that controlled alternate lipid requirements during early versus advanced infections. Loss of function of this enzyme disrupted structural alterations of assembled viral particles rendering them non-infectious and immature and defective in viral entry. This study identifies the complex involvement of SCD1 in DENV2 infection and demonstrates that these viruses alter ER lipid composition to increase infectivity of the virus particles.


Asunto(s)
Virus del Dengue/patogenicidad , Dengue/diagnóstico , Interacciones Huésped-Patógeno , Estearoil-CoA Desaturasa/fisiología , Células A549 , Animales , Biomarcadores , Células Cultivadas , Chlorocebus aethiops , Cricetinae , Dengue/patología , Dengue/virología , Diagnóstico Diferencial , Progresión de la Enfermedad , Diagnóstico Precoz , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Interacciones Huésped-Patógeno/genética , Humanos , Lipogénesis/genética , Masculino , Estearoil-CoA Desaturasa/genética , Células Vero , Virión/patogenicidad , Virulencia , Replicación Viral/genética
16.
PLoS Pathog ; 14(2): e1006853, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29447265

RESUMEN

We describe the first comprehensive analysis of the midgut metabolome of Aedes aegypti, the primary mosquito vector for arboviruses such as dengue, Zika, chikungunya and yellow fever viruses. Transmission of these viruses depends on their ability to infect, replicate and disseminate from several tissues in the mosquito vector. The metabolic environments within these tissues play crucial roles in these processes. Since these viruses are enveloped, viral replication, assembly and release occur on cellular membranes primed through the manipulation of host metabolism. Interference with this virus infection-induced metabolic environment is detrimental to viral replication in human and mosquito cell culture models. Here we present the first insight into the metabolic environment induced during arbovirus replication in Aedes aegypti. Using high-resolution mass spectrometry, we have analyzed the temporal metabolic perturbations that occur following dengue virus infection of the midgut tissue. This is the primary site of infection and replication, preceding systemic viral dissemination and transmission. We identified metabolites that exhibited a dynamic-profile across early-, mid- and late-infection time points. We observed a marked increase in the lipid content. An increase in glycerophospholipids, sphingolipids and fatty acyls was coincident with the kinetics of viral replication. Elevation of glycerolipid levels suggested a diversion of resources during infection from energy storage to synthetic pathways. Elevated levels of acyl-carnitines were observed, signaling disruptions in mitochondrial function and possible diversion of energy production. A central hub in the sphingolipid pathway that influenced dihydroceramide to ceramide ratios was identified as critical for the virus life cycle. This study also resulted in the first reconstruction of the sphingolipid pathway in Aedes aegypti. Given conservation in the replication mechanisms of several flaviviruses transmitted by this vector, our results highlight biochemical choke points that could be targeted to disrupt transmission of multiple pathogens by these mosquitoes.


Asunto(s)
Aedes/virología , Virus del Dengue/fisiología , Tracto Gastrointestinal/virología , Regulación del Desarrollo de la Expresión Génica , Interacciones Huésped-Patógeno , Metabolismo de los Lípidos , Replicación Viral , Aedes/citología , Aedes/metabolismo , Animales , Células Cultivadas , Ceramidas/química , Ceramidas/metabolismo , Virus del Dengue/crecimiento & desarrollo , Femenino , Tracto Gastrointestinal/citología , Tracto Gastrointestinal/enzimología , Tracto Gastrointestinal/metabolismo , Perfilación de la Expresión Génica , Proteínas de Insectos/antagonistas & inhibidores , Proteínas de Insectos/genética , Proteínas de Insectos/metabolismo , Metabolómica , Mitocondrias/enzimología , Mitocondrias/metabolismo , Mosquitos Vectores/citología , Mosquitos Vectores/metabolismo , Mosquitos Vectores/virología , Fosforilación Oxidativa , Interferencia de ARN , ARN Viral/metabolismo , Simbiosis , Carga Viral
17.
J Gen Virol ; 100(11): 1515-1522, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31526452

RESUMEN

Dengue virus (DENV) causes the most prevalent arboviral infection of humans, resulting in a spectrum of outcomes, ranging from asymptomatic infection to dengue fever to severe dengue characterized by vascular leakage and shock. Previously, we determined that DENV nonstructural protein 1 (NS1) induces endothelial hyperpermeability, disrupts the endothelial glycocalyx layer (EGL) in vitro and triggers shedding of structural components, including sialic acid (Sia) and heparan sulfate. Here, using a murine model of dengue disease disease, we found high levels of Sia and NS1 circulating in mice with DENV-induced morbidity and lethal DENV infection. Further, we developed a liquid chromatography/mass spectrometry-based method for quantifying free Sia in serum and determined that the levels of free N-glycolylneuraminic acid were significantly higher in DENV-infected mice than in uninfected controls. These data provide additional evidence that DENV infection disrupts EGL components in vivo and warrant further research assessing Sia as a biomarker of severe dengue disease.


Asunto(s)
Biomarcadores/sangre , Dengue/patología , Ácido N-Acetilneuramínico/sangre , Suero/química , Animales , Cromatografía Liquida , Modelos Animales de Enfermedad , Espectrometría de Masas , Ratones , Análisis de Supervivencia , Proteínas no Estructurales Virales/sangre
18.
Nature ; 496(7443): 101-5, 2013 Apr 04.
Artículo en Inglés | MEDLINE | ID: mdl-23535601

RESUMEN

Cancer cells have metabolic dependencies that distinguish them from their normal counterparts. Among these dependencies is an increased use of the amino acid glutamine to fuel anabolic processes. Indeed, the spectrum of glutamine-dependent tumours and the mechanisms whereby glutamine supports cancer metabolism remain areas of active investigation. Here we report the identification of a non-canonical pathway of glutamine use in human pancreatic ductal adenocarcinoma (PDAC) cells that is required for tumour growth. Whereas most cells use glutamate dehydrogenase (GLUD1) to convert glutamine-derived glutamate into α-ketoglutarate in the mitochondria to fuel the tricarboxylic acid cycle, PDAC relies on a distinct pathway in which glutamine-derived aspartate is transported into the cytoplasm where it can be converted into oxaloacetate by aspartate transaminase (GOT1). Subsequently, this oxaloacetate is converted into malate and then pyruvate, ostensibly increasing the NADPH/NADP(+) ratio which can potentially maintain the cellular redox state. Importantly, PDAC cells are strongly dependent on this series of reactions, as glutamine deprivation or genetic inhibition of any enzyme in this pathway leads to an increase in reactive oxygen species and a reduction in reduced glutathione. Moreover, knockdown of any component enzyme in this series of reactions also results in a pronounced suppression of PDAC growth in vitro and in vivo. Furthermore, we establish that the reprogramming of glutamine metabolism is mediated by oncogenic KRAS, the signature genetic alteration in PDAC, through the transcriptional upregulation and repression of key metabolic enzymes in this pathway. The essentiality of this pathway in PDAC and the fact that it is dispensable in normal cells may provide novel therapeutic approaches to treat these refractory tumours.


Asunto(s)
Glutamina/metabolismo , Redes y Vías Metabólicas , Proteína Oncogénica p21(ras)/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas/metabolismo , Proteínas ras/metabolismo , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/patología , Aspartato Aminotransferasas/deficiencia , Aspartato Aminotransferasas/genética , Aspartato Aminotransferasas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Ciclo del Ácido Cítrico , Glutamato Deshidrogenasa/metabolismo , Homeostasis , Humanos , Ácidos Cetoglutáricos/metabolismo , Proteína Oncogénica p21(ras)/genética , Oncogenes/genética , Oxidación-Reducción , Neoplasias Pancreáticas/genética , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas p21(ras) , Especies Reactivas de Oxígeno/metabolismo , Proteínas ras/genética
19.
Proc Natl Acad Sci U S A ; 111(6): 2134-9, 2014 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-24469789

RESUMEN

Antibodies were prepared by immunizing mice with empty, immature particles of human enterovirus 71 (EV71), a picornavirus that causes severe neurological disease in young children. The capsid structure of these empty particles is different from that of the mature virus and is similar to "A" particles encountered when picornaviruses recognize a potential host cell before genome release. The monoclonal antibody E18, generated by this immunization, induced a conformational change when incubated at temperatures between 4 °C and 37 °C with mature virus, transforming infectious virions into A particles. The resultant loss of genome that was observed by cryo-EM and a fluorescent SYBR Green dye assay inactivated the virus, establishing the mechanism by which the virus is inactivated and demonstrating that the E18 antibody has potential as an anti-EV71 therapy. The antibody-mediated virus neutralization by the induction of genome release has not been previously demonstrated. Furthermore, the present results indicate that antibodies with genome-release activity could also be produced for other picornaviruses by immunization with immature particles.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Enterovirus Humano A/genética , Genoma Viral , Microscopía por Crioelectrón , Enterovirus Humano A/inmunología , Enterovirus Humano A/ultraestructura , Ensayo de Placa Viral
20.
Proc Natl Acad Sci U S A ; 111(30): E3091-100, 2014 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-25024225

RESUMEN

Pancreatic ductal adenocarcinoma (PDA) is the most lethal of common human malignancies, with no truly effective therapies for advanced disease. Preclinical studies have suggested a therapeutic benefit of targeting the Hedgehog (Hh) signaling pathway, which is activated throughout the course of PDA progression by expression of Hh ligands in the neoplastic epithelium and paracrine response in the stromal fibroblasts. Clinical trials to test this possibility, however, have yielded disappointing results. To further investigate the role of Hh signaling in the formation of PDA and its precursor lesion, pancreatic intraepithelial neoplasia (PanIN), we examined the effects of genetic or pharmacologic inhibition of Hh pathway activity in three distinct genetically engineered mouse models and found that Hh pathway inhibition accelerates rather than delays progression of oncogenic Kras-driven disease. Notably, pharmacologic inhibition of Hh pathway activity affected the balance between epithelial and stromal elements, suppressing stromal desmoplasia but also causing accelerated growth of the PanIN epithelium. In striking contrast, pathway activation using a small molecule agonist caused stromal hyperplasia and reduced epithelial proliferation. These results indicate that stromal response to Hh signaling is protective against PDA and that pharmacologic activation of pathway response can slow tumorigenesis. Our results provide evidence for a restraining role of stroma in PDA progression, suggesting an explanation for the failure of Hh inhibitors in clinical trials and pointing to the possibility of a novel type of therapeutic intervention.


Asunto(s)
Carcinoma Ductal Pancreático/metabolismo , Proteínas Hedgehog/metabolismo , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Transducción de Señal , Animales , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Proteínas Hedgehog/antagonistas & inhibidores , Proteínas Hedgehog/genética , Humanos , Ratones , Ratones Noqueados , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteínas Proto-Oncogénicas p21(ras)/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda