Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Haematologica ; 2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38152053

RESUMEN

Mutations in five canonical Ras pathway genes (NF1, NRAS, KRAS, PTPN11 and CBL) are detected in nearly 90% of patients with juvenile myelomonocytic leukemia (JMML), a frequently fatal malignant neoplasm of early childhood. In this report, we describe seven patients diagnosed with SH2B3-mutated JMML, including five patients who were found to have initiating, loss of function mutations in the gene. SH2B3 encodes the adaptor protein LNK, a negative regulator of normal hematopoiesis upstream of the Ras pathway. These mutations were identified to be germline, somatic or a combination of both. Loss of function of LNK, which has been observed in other myeloid malignancies, results in abnormal proliferation of hematopoietic cells due to cytokine hypersensitivity and activation of the JAK/STAT signaling pathway. In vitro studies of induced pluripotent stem cell-derived JMML-like hematopoietic progenitor cells (HPCs) also demonstrated sensitivity of SH2B3- mutated HPCs to JAK inhibition. Lastly, we describe two patients with JMML and SH2B3 mutations who were treated with the JAK1/2 inhibitor ruxolitinib. This report expands the spectrum of initiating mutations in JMML and raises the possibility of targeting the JAK/STAT pathway in patients with SH2B3 mutations.

3.
Cell Rep Med ; 4(11): 101290, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37992684

RESUMEN

Mutations in the receptor tyrosine kinases (RTKs) FLT3 and KIT are frequent and associated with poor outcomes in acute myeloid leukemia (AML). Although selective FLT3 inhibitors (FLT3i) are clinically effective, remissions are short-lived due to secondary resistance characterized by acquired mutations constitutively activating the RAS/MAPK pathway. Hereby, we report the pre-clinical efficacy of co-targeting SHP2, a critical node in MAPK signaling, and BCL2 in RTK-driven AML. The allosteric SHP2 inhibitor RMC-4550 suppresses proliferation of AML cell lines with FLT3 and KIT mutations, including cell lines with acquired resistance to FLT3i. We demonstrate that pharmacologic SHP2 inhibition unveils an Achilles' heel of RTK-driven AML, increasing apoptotic dependency on BCL2 via MAPK-dependent mechanisms, including upregulation of BMF and downregulation of MCL1. Consequently, RMC-4550 and venetoclax are synergistically lethal in AML cell lines and in clinically relevant xenograft models. Our results provide mechanistic rationale and pre-clinical evidence for co-targeting SHP2 and BCL2 in RTK-driven AML.


Asunto(s)
Apoptosis , Leucemia Mieloide Aguda , Humanos , Línea Celular Tumoral , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/farmacología
4.
bioRxiv ; 2023 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-37292835

RESUMEN

Mixed phenotype acute leukemia (MPAL) is a leukemia whose biologic drivers are poorly understood, therapeutic strategy remains unclear, and prognosis is poor. We performed multiomic single cell (SC) profiling of 14 newly diagnosed adult MPAL patients to characterize the immunophenotypic, genetic, and transcriptional landscapes of MPAL. We show that neither genetic profile nor transcriptome reliably correlate with specific MPAL immunophenotypes. However, progressive acquisition of mutations is associated with increased expression of immunophenotypic markers of immaturity. Using SC transcriptional profiling, we find that MPAL blasts express a stem cell-like transcriptional profile distinct from other acute leukemias and indicative of high differentiation potential. Further, patients with the highest differentiation potential demonstrated inferior survival in our dataset. A gene set score, MPAL95, derived from genes highly enriched in this cohort, is applicable to bulk RNA sequencing data and was predictive of survival in an independent patient cohort, suggesting utility for clinical risk stratification.

5.
Nat Biotechnol ; 41(11): 1557-1566, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36879006

RESUMEN

Current single-cell RNA-sequencing approaches have limitations that stem from the microfluidic devices or fluid handling steps required for sample processing. We develop a method that does not require specialized microfluidic devices, expertise or hardware. Our approach is based on particle-templated emulsification, which allows single-cell encapsulation and barcoding of cDNA in uniform droplet emulsions with only a vortexer. Particle-templated instant partition sequencing (PIP-seq) accommodates a wide range of emulsification formats, including microwell plates and large-volume conical tubes, enabling thousands of samples or millions of cells to be processed in minutes. We demonstrate that PIP-seq produces high-purity transcriptomes in mouse-human mixing studies, is compatible with multiomics measurements and can accurately characterize cell types in human breast tissue compared to a commercial microfluidic platform. Single-cell transcriptional profiling of mixed phenotype acute leukemia using PIP-seq reveals the emergence of heterogeneity within chemotherapy-resistant cell subsets that were hidden by standard immunophenotyping. PIP-seq is a simple, flexible and scalable next-generation workflow that extends single-cell sequencing to new applications.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Microfluídica , Humanos , Animales , Ratones , Microfluídica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Análisis de la Célula Individual/métodos , Genómica/métodos , Transcriptoma/genética
6.
Nat Commun ; 12(1): 1583, 2021 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-33707421

RESUMEN

Studies of acute myeloid leukemia rely on DNA sequencing and immunophenotyping by flow cytometry as primary tools for disease characterization. However, leukemia tumor heterogeneity complicates integration of DNA variants and immunophenotypes from separate measurements. Here we introduce DAb-seq, a technology for simultaneous capture of DNA genotype and cell surface phenotype from single cells at high throughput, enabling direct profiling of proteogenomic states in tens of thousands of cells. To demonstrate the approach, we analyze the disease of three patients with leukemia over multiple treatment timepoints and disease recurrences. We observe complex genotype-phenotype dynamics that illustrate the subtlety of the disease process and the degree of incongruity between blast cell genotype and phenotype in different clinical scenarios. Our results highlight the importance of combined single-cell DNA and protein measurements to fully characterize the heterogeneity of leukemia.


Asunto(s)
ADN/genética , Estudios de Asociación Genética , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Análisis de la Célula Individual/métodos , Secuencia de Bases , Línea Celular Tumoral , Técnicas de Genotipaje , Humanos , Inmunofenotipificación , Células Jurkat , Análisis de Secuencia de ADN , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores
7.
Cancer Discov ; 9(8): 1050-1063, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31088841

RESUMEN

Gilteritinib is a potent and selective FLT3 kinase inhibitor with single-agent clinical efficacy in relapsed/refractory FLT3-mutated acute myeloid leukemia (AML). In this context, however, gilteritinib is not curative, and response duration is limited by the development of secondary resistance. To evaluate resistance mechanisms, we analyzed baseline and progression samples from patients treated on clinical trials of gilteritinib. Targeted next-generation sequencing at the time of AML progression on gilteritinib identified treatment-emergent mutations that activate RAS/MAPK pathway signaling, most commonly in NRAS or KRAS. Less frequently, secondary FLT3-F691L gatekeeper mutations or BCR-ABL1 fusions were identified at progression. Single-cell targeted DNA sequencing revealed diverse patterns of clonal selection and evolution in response to FLT3 inhibition, including the emergence of RAS mutations in FLT3-mutated subclones, the expansion of alternative wild-type FLT3 subclones, or both patterns simultaneously. These data illustrate dynamic and complex changes in clonal architecture underlying response and resistance to mutation-selective tyrosine kinase inhibitor therapy in AML. SIGNIFICANCE: Comprehensive serial genotyping of AML specimens from patients treated with the selective FLT3 inhibitor gilteritinib demonstrates that complex, heterogeneous patterns of clonal selection and evolution mediate clinical resistance to tyrosine kinase inhibition in FLT3-mutated AML. Our data support the development of combinatorial targeted therapeutic approaches for advanced AML.See related commentary by Wei and Roberts, p. 998.This article is highlighted in the In This Issue feature, p. 983.


Asunto(s)
Evolución Clonal/genética , Resistencia a Antineoplásicos , Leucemia Mieloide Aguda/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Transducción de Señal/efectos de los fármacos , Tirosina Quinasa 3 Similar a fms/antagonistas & inhibidores , Proteínas ras/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Compuestos de Anilina/farmacología , Compuestos de Anilina/uso terapéutico , Resistencia a Antineoplásicos/genética , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patología , Masculino , Persona de Mediana Edad , Mutación , Inhibidores de Proteínas Quinasas/uso terapéutico , Pirazinas/farmacología , Pirazinas/uso terapéutico , Análisis de la Célula Individual , Adulto Joven , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda