Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Biochim Biophys Acta Mol Basis Dis ; 1864(6 Pt A): 2131-2142, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29601977

RESUMEN

Leigh syndrome (LS) associated with cytochrome c oxidase (COX) deficiency is an early onset, fatal mitochondrial encephalopathy, leading to multiple neurological failure and eventually death, usually in the first decade of life. Mutations in SURF1, a nuclear gene encoding a mitochondrial protein involved in COX assembly, are among the most common causes of LS. LSSURF1 patients display severe, isolated COX deficiency in all tissues, including cultured fibroblasts and skeletal muscle. Recombinant, constitutive SURF1-/- mice show diffuse COX deficiency, but fail to recapitulate the severity of the human clinical phenotype. Pigs are an attractive alternative model for human diseases, because of their size, as well as metabolic, physiological and genetic similarity to humans. Here, we determined the complete sequence of the swine SURF1 gene, disrupted it in pig primary fibroblast cell lines using both TALENs and CRISPR/Cas9 genome editing systems, before finally generating SURF1-/- and SURF1-/+ pigs by Somatic Cell Nuclear Transfer (SCNT). SURF1-/- pigs were characterized by failure to thrive, muscle weakness and highly reduced life span with elevated perinatal mortality, compared to heterozygous SURF1-/+ and wild type littermates. Surprisingly, no obvious COX deficiency was detected in SURF1-/- tissues, although histochemical analysis revealed the presence of COX deficiency in jejunum villi and total mRNA sequencing (RNAseq) showed that several COX subunit-encoding genes were significantly down-regulated in SURF1-/- skeletal muscles. In addition, neuropathological findings, indicated a delay in central nervous system development of newborn SURF1-/- piglets. Our results suggest a broader role of sSURF1 in mitochondrial bioenergetics.


Asunto(s)
Sistema Nervioso Central/crecimiento & desarrollo , Modelos Animales de Enfermedad , Enfermedad de Leigh/genética , Proteínas de la Membrana/genética , Proteínas Mitocondriales/genética , Sus scrofa/genética , Animales , Animales Modificados Genéticamente , Animales Recién Nacidos , Conducta Animal , Sistemas CRISPR-Cas , Células Cultivadas , Regulación hacia Abajo , Complejo IV de Transporte de Electrones/metabolismo , Femenino , Fibroblastos , Edición Génica , Técnicas de Inactivación de Genes , Humanos , Yeyuno/patología , Enfermedad de Leigh/patología , Masculino , Mitocondrias/patología , Músculo Esquelético/citología , Músculo Esquelético/patología , Técnicas de Transferencia Nuclear , Cultivo Primario de Células
3.
Am J Transplant ; 15(2): 358-70, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25612490

RESUMEN

Galactosyl-transferase KO (GalT-KO) pigs represent a potential solution to xenograft rejection, particularly in the context of additional genetic modifications. We have performed life supporting kidney xenotransplantation into baboons utilizing GalT-KO pigs transgenic for human CD55/CD59/CD39/HT. Baboons received tacrolimus, mycophenolate mofetil, corticosteroids and recombinant human C1 inhibitor combined with cyclophosphamide or bortezomib with or without 2-3 plasma exchanges. One baboon received a control GalT-KO xenograft with the latter immunosuppression. All immunosuppressed baboons rejected the xenografts between days 9 and 15 with signs of acute humoral rejection, in contrast to untreated controls (n = 2) that lost their grafts on days 3 and 4. Immunofluorescence analyses showed deposition of IgM, C3, C5b-9 in rejected grafts, without C4d staining, indicating classical complement pathway blockade but alternate pathway activation. Moreover, rejected organs exhibited predominantly monocyte/macrophage infiltration with minimal lymphocyte representation. None of the recipients showed any signs of porcine endogenous retrovirus transmission but some showed evidence of porcine cytomegalovirus (PCMV) replication within the xenografts. Our work indicates that the addition of bortezomib and plasma exchange to the immunosuppressive regimen did not significantly prolong the survival of multi-transgenic GalT-KO renal xenografts. Non-Gal antibodies, the alternative complement pathway, innate mechanisms with monocyte activation and PCMV replication may have contributed to rejection.


Asunto(s)
Ácidos Borónicos/uso terapéutico , Proteína Inhibidora del Complemento C1/uso terapéutico , Galactosiltransferasas/genética , Supervivencia de Injerto/fisiología , Xenoinjertos , Trasplante de Riñón , Intercambio Plasmático , Pirazinas/uso terapéutico , Animales , Animales Modificados Genéticamente , Enfermedades Autoinmunes , Bortezomib , Citomegalovirus/fisiología , Galactosiltransferasas/deficiencia , Técnicas de Inactivación de Genes , Inmunidad Innata/fisiología , Inmunosupresores/uso terapéutico , Riñón/cirugía , Riñón/virología , Modelos Animales , Papio anubis , Sus scrofa , Replicación Viral/fisiología
4.
Neurodegener Dis ; 13(4): 246-54, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24157939

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease that occurs in two clinically indistinguishable forms: sporadic (SALS) and familial (FALS), the latter linked to several gene mutations, mostly inheritable in a dominant manner. Nearly 20% of FALS forms are linked to mutations in the Cu/Zn superoxide dismutase (SOD1) gene. Research on ALS relies on transgenic models and particularly on mice carrying a glycine-to-alanine conversion at the 93rd codon (G93A) of the hSOD1 gene. Although G93A transgenic mice have been widely employed in clinical trials and basic research, doubts have been recently raised from numerous reliable sources about their suitability to faithfully reproduce human disease. Besides, the scientific community has already foreseen swine as an attractive and alternative model to nonhuman primates for modeling human diseases due to closer anatomical, physiological and biochemical features of swine rather than rodents to humans. On this basis, we have produced the first swine ALS model by in vitro transfection of cultured somatic cells combined with somatic cell nuclear transfer (SCNT). To achieve this goal we developed a SOD1(G93A) (superoxide dismutase 1 mutated in Gly93-Ala) vector, capable of promoting a high and stable transgene expression in primary porcine adult male fibroblasts (PAF). After transfection, clonal selection and transgene expression level assessment, selected SOD1(G93A) PAF colonies were used as nuclei donors in SCNT procedures. SOD1(G93A) embryos were transferred in recipient sows, and pregnancies developed to term. A total of 5 piglets survived artificial hand raising and weaning and developed normally, reaching adulthood. Preliminary analysis revealed transgene integration and hSOD1(G93A) expression in swine tissues and 360° phenotypical characterization is ongoing. We believe that our SOD1(G93A) swine would provide an essential bridge between the fundamental work done in rodent models and the reality of treating ALS.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Animales Modificados Genéticamente , Modelos Animales de Enfermedad , Superóxido Dismutasa/genética , Porcinos/genética , Animales , Humanos , Masculino , Superóxido Dismutasa-1
5.
Reprod Domest Anim ; 47 Suppl 3: 2-11, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22681293

RESUMEN

Somatic cell nuclear transfer (SCNT) was first developed in livestock for the purpose of accelerating the widespread use of superior genotypes. Although many problems still exist now after fifteen years of research owing to the limited understanding of genome reprogramming, SCNT has provided a powerful tool to make copies of selected individuals in different species, to study genome pluripotency and differentiation, opening new avenues of research in regenerative medicine and representing the main route for making transgenic livestock. Besides well-established methods to deliver transgenes, recent development in enzymatic engineering to edit the genome provides more precise and reproducible tools to target-specific genomic loci especially for producing knockout animals. The interest in generating transgenic livestock lies in the agricultural and biomedical areas and it is, in most cases, at the stage of research and development, with few exceptions that are making the way into practical applications.


Asunto(s)
Clonación de Organismos/métodos , Ganado , Técnicas de Transferencia Nuclear/veterinaria , Agricultura , Animales , Animales Modificados Genéticamente , Anomalías Congénitas , Ingeniería Genética/métodos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda