Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(38): e2308187120, 2023 09 19.
Artículo en Inglés | MEDLINE | ID: mdl-37695891

RESUMEN

The human endogenous retrovirus type W (HERV-W) has been identified and repeatedly confirmed as human-specific pathogenic entity affecting many cell types in multiple sclerosis (MS). Our recent contributions revealed the encoded envelope (ENV) protein to disturb myelin repair by interfering with oligodendroglial precursor differentiation and by polarizing microglial cells toward an axon-damage phenotype. Indirect proof of ENV's antiregenerative and degenerative activities has been gathered recently in clinical trials using a neutralizing anti-ENV therapeutic antibody. Yet direct proof of its mode of action can only be presented here based on transgenic ENV expression in mice. Upon demyelination, we observed myelin repair deficits, neurotoxic microglia and astroglia, and increased axon degeneration. Experimental autoimmune encephalomyelitis activity progressed faster in mutant mice equally accompanied by activated glial cells. This study therefore provides direct evidence on HERV-W ENV's contribution to the overall negative impact of this activated viral entity in MS.


Asunto(s)
Retrovirus Endógenos , Esclerosis Múltiple , Humanos , Animales , Ratones , Retrovirus Endógenos/genética , Neuroglía , Animales Modificados Genéticamente , Vaina de Mielina , Esclerosis Múltiple/genética
2.
Ann Neurol ; 92(4): 545-561, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35801347

RESUMEN

OBJECTIVE: Human endogenous retroviruses have been implicated in neurodegenerative diseases including amyotrophic lateral sclerosis (ALS). Expression of human endogenous retrovirus K (HERV-K) subtype HML-2 envelope (Env) in human neuronal cultures and in transgenic mice results in neurotoxicity and neurodegeneration, and mice expressing HML-2 Env display behavioral and neuromuscular characteristics resembling ALS. This study aims to characterize the neurotoxic properties of HML-2 Env. METHODS: Env neurotoxicity was detected in ALS cerebrospinal fluid and confirmed using recombinant Env protein in a cell-based assay and a mouse model. The mechanism of neurotoxicity was assessed with immunoprecipitation followed by mass spectrometry and Western blot, and by screening a panel of inhibitors. RESULTS: We observed that recombinant HML-2 Env protein caused neurotoxicity resulting in neuronal cell death, retraction of neurites, and decreased neuronal electrical activity. Injection of the Env protein into the brains of mice also resulted in neuronal cell death. HML-2 Env protein was also found in the cerebrospinal fluid of patients with sporadic ALS. The neurotoxic properties of the Env and the cerebrospinal fluid could be rescued with the anti-Env antibody. The Env was found to bind to CD98HC complexed to ß1 integrin on the neuronal cell surface. Using a panel of compounds to screen for their ability to block Env-induced neurotoxicity, we found that several compounds were protective and are linked to the ß1 integrin pathway. INTERPRETATION: HERV-K Env is released extracellularly in ALS and causes neurotoxicity via a novel mechanism. Present results pave the way for new treatment strategies in sporadic ALS. ANN NEUROL 2022;92:545-561.


Asunto(s)
Esclerosis Amiotrófica Lateral , Retrovirus Endógenos , Esclerosis Amiotrófica Lateral/genética , Animales , Productos del Gen env , Humanos , Integrina beta1 , Ratones , Ratones Transgénicos
3.
Proc Natl Acad Sci U S A ; 116(30): 15216-15225, 2019 07 23.
Artículo en Inglés | MEDLINE | ID: mdl-31213545

RESUMEN

Axonal degeneration is central to clinical disability and disease progression in multiple sclerosis (MS). Myeloid cells such as brain-resident microglia and blood-borne monocytes are thought to be critically involved in this degenerative process. However, the exact underlying mechanisms have still not been clarified. We have previously demonstrated that human endogenous retrovirus type W (HERV-W) negatively affects oligodendroglial precursor cell (OPC) differentiation and remyelination via its envelope protein pathogenic HERV-W (pHERV-W) ENV (formerly MS-associated retrovirus [MSRV]-ENV). In this current study, we investigated whether pHERV-W ENV also plays a role in axonal injury in MS. We found that in MS lesions, pHERV-W ENV is present in myeloid cells associated with axons. Focusing on progressive disease stages, we could then demonstrate that pHERV-W ENV induces a degenerative phenotype in microglial cells, driving them toward a close spatial association with myelinated axons. Moreover, in pHERV-W ENV-stimulated myelinated cocultures, microglia were found to structurally damage myelinated axons. Taken together, our data suggest that pHERV-W ENV-mediated microglial polarization contributes to neurodegeneration in MS. Thus, this analysis provides a neurobiological rationale for a recently completed clinical study in MS patients showing that antibody-mediated neutralization of pHERV-W ENV exerts neuroprotective effects.


Asunto(s)
Axones/virología , Retrovirus Endógenos/metabolismo , Microglía/virología , Esclerosis Múltiple/genética , Neuronas/virología , Proteínas del Envoltorio Viral/genética , Animales , Axones/metabolismo , Axones/ultraestructura , Diferenciación Celular , Ensayos Clínicos Fase II como Asunto , Técnicas de Cocultivo , Retrovirus Endógenos/genética , Retrovirus Endógenos/patogenicidad , Femenino , Expresión Génica , Humanos , Masculino , Microglía/metabolismo , Microglía/ultraestructura , Esclerosis Múltiple/metabolismo , Esclerosis Múltiple/patología , Esclerosis Múltiple/virología , Vaina de Mielina/metabolismo , Vaina de Mielina/ultraestructura , Vaina de Mielina/virología , Neuronas/metabolismo , Neuronas/ultraestructura , Ratas , Ratas Wistar , Proteínas del Envoltorio Viral/metabolismo
4.
Glia ; 67(1): 160-170, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30430656

RESUMEN

Remyelination in the adult CNS depends on activation, differentiation, and functional integration of resident oligodendroglial precursor cells (OPCs) and constitutes the only spontaneous neuroregenerative process able to compensate for functional deficits upon loss of oligodendrocytes and myelin sheaths as it is observed in multiple sclerosis. The proteins encoded by p57kip2- and by human endogenous retrovirus type W (pHERV-W) envelope genes were previously identified as negative regulators of OPC maturation. We here focused on the activity of the ENV protein and investigated how it can be neutralized for an improved myelin repair. We could demonstrate that myelination in vitro is severely affected by this protein but that application of an anti-ENV neutralizing antibody, currently investigated in clinical trials, can rescue the generation of internodes. We then compared p57kip2 and ENV dependent inhibitory mechanisms and found that a dominant negative version of the p57kip2 protein can equally save OPCs from myelination failure in response to ENV-mediated TLR4 activation. Additional experiments addressing p57kip2's underlying mode of action revealed a direct interaction with ATP6v1d, a central component of a vascular ATPase. Its pharmacological blocking was then shown to exert an analogous myelination rescue effect in presence of the ENV protein. Therefore, our study provides mechanistic insights into oligodendroglial inhibition processes and presents three different means to counteract the anti-myelination effect of the ENV protein. These observations are therefore of interest in light of understanding the complexity of the numerous oligodendroglial inhibitors and might promote the establishment of novel regenerative therapies.


Asunto(s)
Diferenciación Celular/fisiología , Retrovirus Endógenos , Productos del Gen env/toxicidad , Vaina de Mielina/fisiología , Oligodendroglía/fisiología , Proteínas Gestacionales/toxicidad , Animales , Diferenciación Celular/efectos de los fármacos , Células Cultivadas , Técnicas de Cocultivo , Inhibidor p57 de las Quinasas Dependientes de la Ciclina/farmacología , Femenino , Humanos , Masculino , Vaina de Mielina/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Ratas , Ratas Wistar
5.
Diabetes Obes Metab ; 20(9): 2075-2084, 2018 09.
Artículo en Inglés | MEDLINE | ID: mdl-29749030

RESUMEN

We describe a newly identified therapeutic target for type 1 diabetes (T1D): an envelope protein of endogenous retroviral origin, human endogenous retrovirus W envelope (HERV-W-Env). HERV-W-Env was found to be detected in the blood of ~60% of patients with T1D and is expressed in acinar pancreatic cells of 75% of patients with T1D at post mortem examination. Preclinical experiments showed that this protein displays direct cytotoxicity on human ß-islet cells. In vivo HERV-W-Env impairs the insulin and glucose metabolism in transgenic mice expressing HERV-W-Env. GNbAC1, an IgG4 monoclonal antibody, has been developed to specifically target HERV-W-Env and to neutralize the effect of HERV-W-Env in vitro and in vivo. GNbAC1 is currently in clinical development for multiple sclerosis and > 300 subjects have been administered with GNbAC1 so far. GNbAC1 is now being tested in T1D in the RAINBOW-T1D study, which is a randomized placebo-controlled study with the objective of showing the safety and pharmacodynamic response of GNbAC1 in patients who have had T1D with a maximum of 4 years' duration. GNbAC1 is being tested vs placebo at the dose of 6 mg/kg in 60 patients during six repeated administrations for 6 months; a 6-month open-label extension will follow. The primary endpoint is to assess safety, and secondary endpoints are the pharmacodynamic responses to GNbAC1. GNbAC1 targeting HERV-W-Env is currently in clinical development in T1D, with the first safety and pharmacodynamic study. If the study results are positive, this may open the door to the development of an innovative non-immunomodulatory disease-modifying treatment for T1D.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Diabetes Mellitus Tipo 1/tratamiento farmacológico , Retrovirus Endógenos/efectos de los fármacos , Productos del Gen env/efectos de los fármacos , Factores Inmunológicos/farmacología , Diabetes Mellitus Tipo 1/virología , Retrovirus Endógenos/inmunología , Productos del Gen env/sangre , Productos del Gen env/inmunología , Humanos
7.
Int Immunol ; 27(11): 545-53, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25957268

RESUMEN

The MSRV (multiple sclerosis-associated retrovirus) belongs to the human endogenous retrovirus HERV-W family. The envelope protein originating from the MSRV has been found in most patients with multiple sclerosis (MS). This protein (Env-ms) has pro-inflammatory properties for several types of immune cells and could therefore play a role in MS pathogenesis by promoting the leukocyte diapedesis observed in the central nervous system of patients. Our study aims to analyze the effects of Env-ms on the blood-brain barrier (BBB) at a molecular and functional level. We demonstrate that the recombinant MSRV envelope is able to stimulate several inflammatory parameters in a human BBB in vitro model, the HCMEC/D3 brain endothelial cell line. Indeed, Env-ms induces over-expression of ICAM-1, a major mediator of leukocyte adhesion to endothelial cells, in a dose-dependent manner as well as a strong dose-dependent production of the pro-inflammatory cytokines IL-6 and IL-8. Furthermore, using a silencing approach with siRNAs, we show that Env-ms is recognized via the Toll-like receptor 4 receptor, a pattern recognition receptor of innate immunity present on endothelial cells. We also show, using functional assays, that treatment of brain endothelial cells with Env-ms significantly stimulated the adhesion and the transmigration of activated immune cells through a monolayer of endothelial cells. These findings support the hypothesis that MSRV could be involved in the pathogenesis of MS disease or at least in maintenance of inflammatory conditions, thus fueling the auto-immune disorder. MSRV could also play a role in other chronic inflammatory diseases.


Asunto(s)
Retrovirus Endógenos , Células Endoteliales/metabolismo , Células Endoteliales/virología , Esclerosis Múltiple/etiología , Esclerosis Múltiple/metabolismo , Receptor Toll-Like 4/metabolismo , Barrera Hematoencefálica/metabolismo , Encéfalo/inmunología , Encéfalo/metabolismo , Adhesión Celular , Línea Celular , Citocinas/biosíntesis , Expresión Génica , Técnicas de Silenciamiento del Gen , Productos del Gen env/metabolismo , Humanos , Mediadores de Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/genética , Molécula 1 de Adhesión Intercelular/metabolismo , Leucocitos/inmunología , Leucocitos/metabolismo , Receptor Toll-Like 4/genética
8.
Mult Scler ; 21(9): 1200-3, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25480862

RESUMEN

BACKGROUND: The envelope protein (ENV) of the human endogenous retrovirus type W is implicated in inflammatory reactions in multiple sclerosis (MS) but also interferes with oligodendroglial maturation. A neutralizing antibody GNbAC1 has been developed and successfully been tested in clinical trials. OBJECTIVES AND METHODS: We stimulated primary oligodendroglial cells with ENV upon preincubation with GNbAC1 and assessed for nitrosative stress and myelin expression. RESULTS: Neutralization of ENV by GNbAC1 reduces its ability to induce stress reactions resulting in a rescue of myelin expression. CONCLUSIONS: Beyond immune cell modulation, this monoclonal antibody may therefore help to overcome the oligodendroglial differentiation blockade in MS.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Anticuerpos Neutralizantes/farmacología , Diferenciación Celular/efectos de los fármacos , Oligodendroglía/efectos de los fármacos , Línea Celular , Retrovirus Endógenos , Humanos , Oligodendroglía/citología , Oligodendroglía/virología , Proteínas del Envoltorio Viral
9.
Mult Scler ; 21(7): 885-93, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25392325

RESUMEN

BACKGROUND: GNbAC1 is an immunoglobulin (IgG4) humanised monoclonal antibody against multiple sclerosis-associated retrovirus (MSRV)-Env, a protein of endogenous retroviral origin, expressed in multiple sclerosis (MS) lesions, which is pro-inflammatory and inhibits oligodendrocyte precursor cell differentiation. OBJECTIVE: This is a randomised, double-blind placebo-controlled dose-escalation study followed by a six-month open-label phase to test GNbAC1 in MS patients. The primary objective was to assess GNbAC1 safety in MS patients, and the other objectives were pharmacokinetic and pharmacodynamic assessments. METHODS: Ten MS patients were randomised into two cohorts to receive a single intravenous infusion of GNbAC1/placebo at doses of 2 or 6 mg/kg. Then all patients received five infusions of GNbAC1 at 2 or 6 mg/kg at four-week intervals in an open-label setting. Safety, brain magnetic resonance imaging (MRI), pharmacokinetics, immunogenicity, cytokines and MSRV RNA expression were studied. RESULTS: All patients completed the study. GNbAC1 was well tolerated in all patients. GNbAC1 pharmacokinetics is dose-linear with mean elimination half-life of 27-37 d. Anti-GNbAC1 antibodies were not detected. Cytokine analysis did not indicate an adverse effect. MSRV-transcripts showed a decline after the start of treatment. Nine patients had stable brain lesions at MRI. CONCLUSION: The safety, pharmacokinetic profile, and pharmacodynamic responses to GNbAC1 are favourable in MS patients over a six-month treatment period.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Productos del Gen env/antagonistas & inhibidores , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/patología , Adulto , Anticuerpos Monoclonales Humanizados/farmacocinética , Encéfalo/patología , Método Doble Ciego , Retrovirus Endógenos , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/virología , Reacción en Cadena de la Polimerasa , ARN Viral/análisis
10.
Ann Neurol ; 74(5): 721-32, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23836485

RESUMEN

OBJECTIVE: Differentiation of oligodendroglial precursor cells is crucial for central nervous system remyelination and is influenced by both extrinsic and intrinsic factors. Recent studies showed that human endogenous retrovirus type W (HERV-W) contributes significantly to brain damage. In particular, its envelope protein ENV can mediate injury to specific cell types of the brain and immune system. Here, we investigated whether ENV protein affects oligodendroglial differentiation. METHODS: Immunostaining and gene expression analyses were performed to establish the expression and regulation of the known ENV receptor, Toll-like receptor 4 (TLR4), on oligodendroglial precursor cells in human brain tissue and in culture. Cultured primary oligodendroglial precursor cells were stimulated with ENV protein to determine the effects of this ligand/receptor interaction. RESULTS: We demonstrated that the ENV protein is present in close proximity to TLR4-expressing oligodendroglial precursor cells adjacent to multiple sclerosis lesions. Human and rat oligodendroglial precursor cells expressed TLR4, and the ENV-mediated activation of TLR4 led to the induction of proinflammatory cytokines and inducible nitric oxide synthase as well as the formation of nitrotyrosine groups and a subsequent reduction in myelin protein expression. INTERPRETATION: Our findings suggest that ENV-mediated induction of nitrosative stress via activation of TLR4 results in an overall reduction of the oligodendroglial differentiation capacity, thereby contributing to remyelination failure. Therefore, pharmacological or antibody-mediated inhibition of ENV may prevent the blockade of myelin repair in the diseased or injured central nervous system.


Asunto(s)
Diferenciación Celular , Productos del Gen env/metabolismo , Vaina de Mielina/metabolismo , Células-Madre Neurales/citología , Oligodendroglía/citología , Proteínas Gestacionales/metabolismo , Receptor Toll-Like 4/metabolismo , Animales , Células Cultivadas , Productos del Gen env/genética , Humanos , Vaina de Mielina/genética , Células-Madre Neurales/metabolismo , Oligodendroglía/metabolismo , Proteínas Gestacionales/genética , Ratas , Receptor Toll-Like 4/genética
11.
Microbes Infect ; : 105387, 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38944111

RESUMEN

Though not usual for the editors of a scientific journal to ask that a story be told to its readers, this special issue is offering an opportunity to pay tribute to all those who have made it possible for a long scientific journey to open up many research avenues, to access the discoveries of what was not known and to the understanding of what was unveiled in the field of human endogenous retroviruses. In particular, and beyond a simple fortuitous association, to show their pathogenic involvement in certain diseases whose causality has been the subject of numerous and variable hypotheses.

12.
Transl Psychiatry ; 13(1): 272, 2023 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-37524719

RESUMEN

Epidemiology has repeatedly associated certain infections with a risk of further developing psychiatric diseases. Such infections can activate retro-transposable genetic elements (HERV) known to trigger immune receptors and impair synaptic plasticity of neuroreceptors. Since the HERV-W ENV protein was recently shown to co-cluster with pro-inflammatory cytokines in a subgroup of patients with schizophrenia or bipolar disorder, we questioned the influence of the COVID-19 pandemic on patients with psychosis spectrum disorders (PSD). Present results revealed that (i) SARS-CoV-2 serology shows high prevalence and titers of antibodies in PSD, (ii) HERV-W ENV is detected in seropositive individuals only and (iii) SARS-CoV-2 and HERV-W ENV positivity co-clustered with high serum levels of pro-inflammatory cytokines in psychotic patients. These results thus suggest that SARS-CoV-2 infection in many patients with psychotic disorders now admitted in the psychiatry department did not cause severe COVID-19. They also confirm the previously reported association of elevated serum pro-inflammatory cytokines and HERV-W ENV in a subgroup of psychotic patients. In the context of the COVID-19 pandemic, this cluster is only found in SARS-CoV-2 seropositive PSD cases, suggesting a dominant influence of this virus on HERV-W ENV and cytokine expression, and/or patients' greater susceptibility to SARS-CoV-2 infection. Further investigation on an interplay between this viral infection and the clinical evolution of such PSD patients is needed. However, this repeatedly defined subgroup of psychotic patients with a pro-inflammatory phenotype and HERV expression calls for a differential therapeutic approach in psychoses, therefore for further precision medicine development.


Asunto(s)
COVID-19 , Retrovirus Endógenos , Trastornos Psicóticos , Esquizofrenia , Humanos , SARS-CoV-2/genética , Pandemias , COVID-19/genética , Esquizofrenia/genética , Trastornos Psicóticos/genética , Inflamación/genética
13.
iScience ; 26(5): 106604, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37091988

RESUMEN

Patients with COVID-19 may develop abnormal inflammatory response, followed in some cases by severe disease and long-lasting syndromes. We show here that in vitro exposure to SARS-CoV-2 activates the expression of the human endogenous retrovirus (HERV) HERV-W proinflammatory envelope protein (ENV) in peripheral blood mononuclear cells from a subset of healthy donors, in ACE2 receptor and infection-independent manner. Plasma and/or sera of 221 COVID-19 patients from different cohorts, infected with successive SARS-CoV-2 variants including the Omicron, had detectable HERV-W ENV, which correlated with ENV expression in T lymphocytes and peaked with the disease severity. HERV-W ENV was also found in postmortem tissues of lungs, heart, gastrointestinal tract, brain olfactory bulb, and nasal mucosa from COVID-19 patients. Altogether, these results demonstrate that SARS-CoV-2 could induce HERV-W envelope protein expression and suggest its involvement in the immunopathogenesis of certain COVID-19-associated syndromes and thereby its relevance in the development of personalized treatment of patients.

14.
Mult Scler ; 18(12): 1721-36, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22457345

RESUMEN

BACKGROUND: The envelope protein from multiple sclerosis (MS) associated retroviral element (MSRV), a member of the Human Endogenous Retroviral family 'W' (HERV-W), induces dysimmunity and inflammation. OBJECTIVE: The objective of this study was to confirm and specify the association between HERV-W/MSRV envelope (Env) expression and MS. METHODS: 103 MS, 199 healthy controls (HC) and controls with other neurological diseases (28), chronic infections (30) or autoimmunity (30) were analysed with an immunoassay detecting Env in serum. Env RNA or DNA copy numbers in peripheral blood mononuclear cells (PBMC) were determined by a quantitative polymerase chain reaction (PCR). Env was detected by immunohistology in the brains of patients with MS with three specific monoclonals. RESULTS: Env antigen was detected in a serum of 73% of patients with MS with similar prevalence in all clinical forms, and not in chronic infection, systemic lupus, most other neurological diseases and healthy donors (p<0.01). Cases with chronic inflammatory demyelinating polyneuropathy (5/8) and rare HC (4/103) were positive. RNA expression in PBMC and DNA copy numbers were significantly elevated in patients with MS versus HC (p<0.001). In patients with MS, DNA copy numbers were significantly increased in chronic progressive MS (secondary progressive MS vs relapsing-remitting MS (RRMS) p<0.001; primary progressive MS vs RRMS -<0.02). Env protein was evidenced in macrophages within MS brain lesions with particular concentrations around vascular elements. CONCLUSION: The association between MS disease and the MSRV-type HERV-W element now appears quite strong, as evidenced ex-vivo from serum and PBMC with post-mortem confirmation in brain lesions. Chronic progressive MS, RRMS and clinically isolated syndrome show different ELISA (Enzyme-Linked Immunosorbent Assay) and/or PCR profiles suggestive of an increase with disease evolution, and amplicon sequencing confirms the association with particular HERV-W elements.


Asunto(s)
Encéfalo/virología , Retrovirus Endógenos , Esclerosis Múltiple/virología , Proteínas del Envoltorio Viral/metabolismo , Ensayo de Inmunoadsorción Enzimática , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/sangre , Reacción en Cadena en Tiempo Real de la Polimerasa , Proteínas del Envoltorio Viral/análisis
15.
Front Immunol ; 13: 1020064, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36389746

RESUMEN

Due to the wide scope and persistence of COVID-19´s pandemic, post-COVID-19 condition represents a post-viral syndrome of unprecedented dimensions. SARS-CoV-2, in line with other infectious agents, has the capacity to activate dormant human endogenous retroviral sequences ancestrally integrated in human genomes (HERVs). This activation was shown to relate to aggravated COVID-19 patient´s symptom severity. Despite our limited understanding of how HERVs are turned off upon infection clearance, or how HERVs mediate long-term effects when their transcription remains aberrantly on, the participation of these elements in neurologic disease, such as multiple sclerosis, is already settling the basis for effective therapeutic solutions. These observations support an urgent need to identify the mechanisms that lead to HERV expression with SARS-CoV-2 infection, on the one hand, and to answer whether persistent HERV expression exists in post-COVID-19 condition, on the other. The present study shows, for the first time, that the HERV-W ENV protein can still be actively expressed long after SARS-CoV-2 infection is resolved in post-COVID-19 condition patients. Moreover, increased anti-SARS-CoV-2 immunoglobulins in post-COVID-19 condition, particularly high anti-SARS-CoV-2 immunoglobulin levels of the E isotype (IgE), seem to strongly correlate with deteriorated patient physical function (r=-0.8057, p<0.01). These results indicate that HERV-W ENV antigenemia and anti-SARS-CoV-2 IgE serology should be further studied to better characterize post-COVID-19 condition pathogenic drivers potentially differing in subsets of patients with various symptoms. They also point out that such biomarkers may serve to design therapeutic options for precision medicine in post-COVID-19 condition.


Asunto(s)
COVID-19 , Retrovirus Endógenos , Esclerosis Múltiple , Humanos , SARS-CoV-2 , Inmunoglobulina E
16.
Virol Sin ; 36(5): 1006-1026, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33770381

RESUMEN

In multiple sclerosis (MS), human endogenous retrovirus W family (HERV-W) envelope protein, pHERV-W ENV, limits remyelination and induces microglia-mediated neurodegeneration. To better understand its role, we examined the soluble pHERV-W antigen from MS brain lesions detected by specific antibodies. Physico-chemical and antigenic characteristics confirmed differences between pHERV-W ENV and syncytin-1. pHERV-W ENV monomers and trimers remained associated with membranes, while hexamers self-assembled from monomers into a soluble macrostructure involving sulfatides in MS brain. Extracellular hexamers are stabilized by internal hydrophobic bonds and external hydrophilic moieties. HERV-W studies in MS also suggest that this diffusible antigen may correspond to a previously described high-molecular-weight neurotoxic factor secreted by MS B-cells and thus represents a major agonist in MS pathogenesis. Adapted methods are now needed to identify encoding HERV provirus(es) in affected cells DNA. The properties and origin of MS brain pHERV-W ENV soluble antigen will allow a better understanding of the role of HERVs in MS pathogenesis. The present results anyhow pave the way to an accurate detection of the different forms of pHERV-W ENV antigen with appropriate conditions that remained unseen until now.


Asunto(s)
Retrovirus Endógenos , Esclerosis Múltiple , Encéfalo , Humanos , Microglía , Solubilidad
17.
Transl Psychiatry ; 11(1): 377, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34230451

RESUMEN

Human endogenous retroviruses (HERVs) are remnants of infections that took place several million years ago and represent around 8% of the human genome. Despite evidence implicating increased expression of HERV type W envelope (HERV-W ENV) in schizophrenia and bipolar disorder, it remains unknown whether such expression is associated with distinct clinical or biological characteristics and symptoms. Accordingly, we performed unsupervised two-step clustering of a multivariate data set that included HERV-W ENV protein antigenemia, serum cytokine levels, childhood trauma scores, and clinical data of cohorts of patients with schizophrenia (n = 29), bipolar disorder (n = 43) and healthy controls (n = 32). We found that subsets of patients with schizophrenia (~41%) and bipolar disorder (~28%) show positive antigenemia for HERV-W ENV protein, whereas the large majority (96%) of controls was found to be negative for ENV protein. Unsupervised cluster analysis identified the presence of two main clusters of patients, which were best predicted by the presence or absence of HERV-W ENV protein. HERV-W expression was associated with increased serum levels of inflammatory cytokines and higher childhood maltreatment scores. Furthermore, patients with schizophrenia who were positive for HERV-W ENV protein showed more manic symptoms and higher daily chlorpromazine (CPZ) equivalents, whereas HERV-W ENV positive patients with bipolar disorder were found to have an earlier disease onset than those who were negative for HERV-W ENV protein. Taken together, our study suggest that HERV-W ENV protein antigenemia and cytokines can be used to stratify patients with major mood and psychotic disorders into subgroups with differing inflammatory and clinical profiles.


Asunto(s)
Trastorno Bipolar , Retrovirus Endógenos , Esquizofrenia , Análisis por Conglomerados , Productos del Gen env/genética , Humanos , Esquizofrenia/genética
18.
EBioMedicine ; 66: 103341, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33867312

RESUMEN

BACKGROUND: Despite an impressive effort in clinical research, no standard therapeutic approach for coronavirus disease 2019 (COVID-19) patients has been established, highlighting the need to identify early biomarkers for predicting disease progression and new therapeutic interventions for patient management. The present study aimed to evaluate the involvement of the human endogenous retrovirus -W envelope (HERV-W ENV) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection considering recent findings that HERVs are activated in response to infectious agents and lead to various immunopathological effects. We analysed HERV-W ENV expression in blood cells of COVID-19 patients in correlation with clinical characteristics and have discussed its potential role in the outcome of the disease. METHODS: We analysed HERV-W ENV expression in blood samples of COVID-19 patients and healthy donors by flow cytometry and quantitative reverse transcriptase PCR analysis, and evaluated its correlation with clinical signs, inflammatory markers, cytokine expression, and disease progression. FINDINGS: HERV-W ENV was highly expressed in the leukocytes of COVID-19 patients but not in those of healthy donors. Its expression correlated with the markers of T-cell differentiation and exhaustion and blood cytokine levels. The percentage of HERV-W ENV-positive lymphocytes correlated with inflammatory markers and pneumonia severity in COVID-19 patients. Notably, HERV-W ENV expression reflects the respiratory outcome of patients during hospitalization. INTERPRETATION: Given the known immuno- and neuro-pathogenicity of HERV-W ENV protein, it could promote certain pathogenic features of COVID-19 and therefore serve as a biomarker to predict clinical progression of disease and open to further studies for therapeutic intervention. FUNDING: Information available at the end of the manuscript.


Asunto(s)
COVID-19/virología , Productos del Gen env/metabolismo , Proteínas Gestacionales/metabolismo , Linfocitos T/virología , Anciano , Antivirales/uso terapéutico , COVID-19/etiología , COVID-19/terapia , Estudios de Casos y Controles , Diferenciación Celular , Citocinas/metabolismo , Retrovirus Endógenos , Femenino , Productos del Gen env/genética , Hospitalización , Humanos , Interleucina-6/sangre , Interleucina-6/farmacología , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Masculino , Persona de Mediana Edad , Neumonía Viral/diagnóstico por imagen , Neumonía Viral/terapia , Neumonía Viral/virología , Proteínas Gestacionales/genética , Índice de Severidad de la Enfermedad , Linfocitos T/metabolismo , Resultado del Tratamiento
19.
Mult Scler Relat Disord ; 42: 102068, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32302965

RESUMEN

The Third International Workshop on Human Endogenous Retroviruses and disease (www.hervanddisease.com), addressing HERVs or transposable elements in autoimmune, chronic inflammatory and degenerative diseases or cancer, in Lyon, France on November 5-6th 2019, once again gathered an international group of basic and clinical scientists investigating the involvement of human endogenous retroviruses (HERVs) in human diseases.


Asunto(s)
Anticuerpos Monoclonales Humanizados/farmacología , Congresos como Asunto , Retrovirus Endógenos , Factores Inmunológicos/farmacología , Esclerosis Múltiple , Francia , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Esclerosis Múltiple/etiología , Esclerosis Múltiple/virología
20.
Microorganisms ; 8(9)2020 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-32883004

RESUMEN

Human Endogenous Retrovirus W Envelope (HERV-W ENV) mRNA or protein can be found in peripheral blood mononuclear cells (PBMCs) and exocrine pancreas of patients with type 1 diabetes (T1D). Further, previous observations have shown an association between enteroviral infection and development of T1D; specifically, coxsackievirus-B (CV-B) has been detected in the blood and pancreas of patients with T1D. Notably, viruses can activate HERV-W expression. Hence, we evaluated the effect of CV-B4 infection on HERV-W ENV mRNA expression. Primary human pancreatic ductal cells were obtained from five brain-dead donors. In the pancreatic cells of three donors, the HERV-W ENV mRNA level measured using RT-qPCR was upregulated upon CV-B4 infection. The HERV-W ENV protein was detected in the infected cells using the immunoblot assay. In human PBMCs inoculated with CV-B4 or when CV-B4 was incubated with an enhancing serum, the HERV-W ENV mRNA level was higher than the background RNA level. In monocyte-derived macrophages obtained from 5 of 13 donors, the HERV-W ENV mRNA level was higher in cultures inoculated with CV-B4 than in the control. Therefore, CV-B4 can upregulate or induce the transcription of a certain HERV-W ENV copy (or copies) in primary cell cultures, such as monocytes, macrophages, and pancreatic cells.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda