RESUMEN
Primitive neuroectodermal tumors of the central nervous system (CNS-PNETs) are highly aggressive, poorly differentiated embryonal tumors occurring predominantly in young children but also affecting adolescents and adults. Herein, we demonstrate that a significant proportion of institutionally diagnosed CNS-PNETs display molecular profiles indistinguishable from those of various other well-defined CNS tumor entities, facilitating diagnosis and appropriate therapy for patients with these tumors. From the remaining fraction of CNS-PNETs, we identify four new CNS tumor entities, each associated with a recurrent genetic alteration and distinct histopathological and clinical features. These new molecular entities, designated "CNS neuroblastoma with FOXR2 activation (CNS NB-FOXR2)," "CNS Ewing sarcoma family tumor with CIC alteration (CNS EFT-CIC)," "CNS high-grade neuroepithelial tumor with MN1 alteration (CNS HGNET-MN1)," and "CNS high-grade neuroepithelial tumor with BCOR alteration (CNS HGNET-BCOR)," will enable meaningful clinical trials and the development of therapeutic strategies for patients affected by poorly differentiated CNS tumors.
Asunto(s)
Neoplasias del Sistema Nervioso Central/genética , Neoplasias del Sistema Nervioso Central/patología , Metilación de ADN , Tumores Neuroectodérmicos/genética , Tumores Neuroectodérmicos/patología , Secuencia de Aminoácidos , Neoplasias del Sistema Nervioso Central/clasificación , Neoplasias del Sistema Nervioso Central/diagnóstico , Niño , Factores de Transcripción Forkhead/genética , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica , Humanos , Datos de Secuencia Molecular , Tumores Neuroectodérmicos/clasificación , Tumores Neuroectodérmicos/diagnóstico , Proteínas Proto-Oncogénicas/química , Proteínas Proto-Oncogénicas/genética , Proteínas Represoras/química , Proteínas Represoras/genética , Transducción de Señal , Transactivadores , Proteínas Supresoras de Tumor/genéticaRESUMEN
Glioblastoma is a clinically and molecularly heterogeneous disease, and new predictive biomarkers are needed to identify those patients most likely to respond to specific treatments. Through prospective genomic profiling of 459 consecutive primary treatment-naïve IDH-wildtype glioblastomas in adults, we identified a unique subgroup (2%, 9/459) defined by somatic hypermutation and DNA replication repair deficiency due to biallelic inactivation of a canonical mismatch repair gene. The deleterious mutations in mismatch repair genes were often present in the germline in the heterozygous state with somatic inactivation of the remaining allele, consistent with glioblastomas arising due to underlying Lynch syndrome. A subset of tumors had accompanying proofreading domain mutations in the DNA polymerase POLE and resultant "ultrahypermutation". The median age at diagnosis was 50 years (range 27-78), compared with 63 years for the other 450 patients with conventional glioblastoma (p < 0.01). All tumors had histologic features of the giant cell variant of glioblastoma. They lacked EGFR amplification, lacked combined trisomy of chromosome 7 plus monosomy of chromosome 10, and only rarely had TERT promoter mutation or CDKN2A homozygous deletion, which are hallmarks of conventional IDH-wildtype glioblastoma. Instead, they harbored frequent inactivating mutations in TP53, NF1, PTEN, ATRX, and SETD2 and recurrent activating mutations in PDGFRA. DNA methylation profiling revealed they did not align with known reference adult glioblastoma methylation classes, but instead had unique globally hypomethylated epigenomes and mostly classified as "Diffuse pediatric-type high grade glioma, RTK1 subtype, subclass A". Five patients were treated with immune checkpoint blockade, four of whom survived greater than 3 years. The median overall survival was 36.8 months, compared to 15.5 months for the other 450 patients (p < 0.001). We conclude that "De novo replication repair deficient glioblastoma, IDH-wildtype" represents a biologically distinct subtype in the adult population that may benefit from prospective identification and treatment with immune checkpoint blockade.
Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Adulto , Humanos , Niño , Persona de Mediana Edad , Anciano , Glioblastoma/genética , Glioblastoma/patología , Inhibidores de Puntos de Control Inmunológico , Homocigoto , Estudios Prospectivos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Eliminación de Secuencia , Mutación/genética , Isocitrato Deshidrogenasa/genéticaRESUMEN
Tumors of the central nervous system (CNS) often display a wide morphologic spectrum that has, until recently, been the sole basis for tumor classification. The introduction of the integrated histomolecular diagnostic approach in CNS tumors has facilitated a classification system that is increasingly data-driven and with improved alignment to clinical outcome. Here, we report a previously uncharacterized glioma type (n = 31) using unsupervised clustering analysis of DNA methylation array data from approximately 14,000 CNS tumor samples. Histologic examination revealed circumscribed growth and morphologic similarities to pleomorphic xanthoastrocytoma (PXA), astroblastoma, ependymoma, polymorphous neuroepithelial tumor of the young (PLNTY), and IDH-wildtype glioblastoma (GBM). Median age (46.5 years) was significantly older than other circumscribed gliomas and younger than GBM. Dimensionality reduction with uniform manifold approximation and projection (UMAP) and hierarchical clustering confirmed a methylation signature distinct from known tumor types and methylation classes. DNA sequencing revealed recurrent mutations in TP53 (57%), RB1 (26%), NF1 (26%), and NF2 (14%). BRAF V600E mutations were detected in 3/27 sequenced cases (12%). Copy number analysis showed increased whole chromosome aneuploidy with recurrent loss of chromosome 13 (28/31 cases, 90%). CDKN2A/B deletion (2/31, 6%) and MGMT promoter methylation (1/31, 3%) were notably rare events. Most tumors showed features of a high-grade glioma, yet survival data showed significantly better overall survival compared to GBM (p < 0.0001). In summary, we describe a previously uncharacterized glioma of adults identified by a distinct DNA methylation signature and recurrent loss of chromosome 13.
Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioma , Monosomía , Mutación , Proteína p53 Supresora de Tumor , Astrocitoma/genética , Astrocitoma/patología , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Cromosomas Humanos Par 13 , Humanos , Persona de Mediana Edad , Mutación/genética , Proteína p53 Supresora de Tumor/genéticaRESUMEN
Gliomas arising in the setting of neurofibromatosis type 1 (NF1) are heterogeneous, occurring from childhood through adulthood, can be histologically low-grade or high-grade, and follow an indolent or aggressive clinical course. Comprehensive profiling of genetic alterations beyond NF1 inactivation and epigenetic classification of these tumors remain limited. Through next-generation sequencing, copy number analysis, and DNA methylation profiling of gliomas from 47 NF1 patients, we identified 2 molecular subgroups of NF1-associated gliomas. The first harbored biallelic NF1 inactivation only, occurred primarily during childhood, followed a more indolent clinical course, and had a unique epigenetic signature for which we propose the terminology "pilocytic astrocytoma, arising in the setting of NF1". The second subgroup harbored additional oncogenic alterations including CDKN2A homozygous deletion and ATRX mutation, occurred primarily during adulthood, followed a more aggressive clinical course, and was epigenetically diverse, with most tumors aligning with either high-grade astrocytoma with piloid features or various subclasses of IDH-wildtype glioblastoma. Several patients were treated with small molecule MEK inhibitors that resulted in stable disease or tumor regression when used as a single agent, but only in the context of those tumors with NF1 inactivation lacking additional oncogenic alterations. Together, these findings highlight recurrently altered pathways in NF1-associated gliomas and help inform targeted therapeutic strategies for this patient population.
Asunto(s)
Astrocitoma , Neoplasias Encefálicas , Glioma , Neurofibromatosis 1 , Adulto , Astrocitoma/genética , Neoplasias Encefálicas/genética , Glioma/genética , Glioma/patología , Homocigoto , Humanos , Neurofibromatosis 1/complicaciones , Neurofibromatosis 1/genética , Eliminación de SecuenciaRESUMEN
The classification of adenohypophysial neoplasms as "pituitary neuroendocrine tumors" (PitNETs) was proposed in 2017 to reflect their characteristics as epithelial neuroendocrine neoplasms with a spectrum of clinical behaviors ranging from small indolent lesions to large, locally invasive, unresectable tumors. Tumor growth and hormone hypersecretion cause significant morbidity and mortality in a subset of patients. The proposal was endorsed by a WHO working group that sought to provide a unified approach to neuroendocrine neoplasia in all body sites. We review the features that are characteristic of neuroendocrine cells, the epidemiology and prognosis of these tumors, as well as further refinements in terms used for other pituitary tumors to ensure consistency with the WHO framework. The intense study of PitNETs has provided information about the importance of cellular differentiation in tumor prognosis as a model for neuroendocrine tumors in different locations.
Asunto(s)
Tumores Neuroendocrinos/clasificación , Tumores Neuroendocrinos/patología , Neoplasias Hipofisarias/clasificación , Neoplasias Hipofisarias/patología , HumanosRESUMEN
Pituicytoma (PITUI), granular cell tumor (GCT), and spindle cell oncocytoma (SCO) are rare tumors of the posterior pituitary. Histologically, they may be challenging to distinguish and have been proposed to represent a histological spectrum of a single entity. We performed targeted next-generation sequencing, DNA methylation profiling, and copy number analysis on 47 tumors (14 PITUI; 12 GCT; 21 SCO) to investigate molecular features and explore possibilities of clinically meaningful tumor subclassification. We detected two main epigenomic subgroups by unsupervised clustering of DNA methylation data, though the overall methylation differences were subtle. The largest group (n = 23) contained most PITUIs and a subset of SCOs and was enriched for pathogenic mutations within genes in the MAPK/PI3K pathways (12/17 [71%] of sequenced tumors: FGFR1 (3), HRAS (3), BRAF (2), NF1 (2), CBL (1), MAP2K2 (1), PTEN (1)) and two with accompanying TERT promoter mutation. The second group (n = 16) contained most GCTs and a subset of SCOs, all of which mostly lacked identifiable genetic drivers. Outcome analysis demonstrated that the presence of chromosomal imbalances was significantly associated with reduced progression-free survival especially within the combined PITUI and SCO group (p = 0.031). In summary, we observed only subtle DNA methylation differences between posterior pituitary tumors, indicating that these tumors may be best classified as subtypes of a single entity. Nevertheless, our data indicate differences in mutation patterns and clinical outcome. For a clinically meaningful subclassification, we propose a combined histo-molecular approach into three subtypes: one subtype is defined by granular cell histology, scarcity of identifiable oncogenic mutations, and favorable outcome. The other two subtypes have either SCO or PITUI histology but are segregated by chromosomal copy number profile into a favorable group (no copy number changes) and a less favorable group (copy number imbalances present). Both of the latter groups have recurrent MAPK/PI3K genetic alterations that represent potential therapeutic targets.
Asunto(s)
Adenoma Oxifílico/genética , Tumor de Células Granulares/genética , Neoplasias Hipofisarias/genética , Epigénesis Genética , HumanosRESUMEN
In contrast to adults, meningiomas are uncommon tumors in childhood and adolescence. Whether adult and pediatric meningiomas differ on a molecular level is unclear. Here we report detailed genomic analyses of 37 pediatric meningiomas by sequencing and DNA methylation profiling. Histologically, the series was dominated by meningioma subtypes with aggressive behavior, with 70% of patients suffering from WHO grade II or III meningiomas. The most frequent cytogenetic aberrations were loss of chromosomes 22 (23/37 [62%]), 1 (9/37 [24%]), 18 (7/37 [19%]), and 14 (5/37 [14%]). Tumors with NF2 alterations exhibited overall increased chromosomal instability. Unsupervised clustering of DNA methylation profiles revealed separation into three groups: designated group 1 composed of clear cell and papillary meningiomas, whereas group 2A comprised predominantly atypical meningiomas and group 2B enriched for rare high-grade subtypes (rhabdoid, chordoid). Meningiomas from NF2 patients clustered exclusively within groups 1 and 2A. When compared with a dataset of 105 adult meningiomas, the pediatric meningiomas largely grouped separately. Targeted panel DNA sequencing of 34 tumors revealed frequent NF2 alterations, while other typical alterations found in adult non-NF2 tumors were absent. These data demonstrate that pediatric meningiomas are characterized by molecular features distinct from adult tumors.
Asunto(s)
Neoplasias Meníngeas/genética , Meningioma/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Perfilación de la Expresión Génica , Humanos , Masculino , Neoplasias Meníngeas/patología , Meningioma/patología , TranscriptomaRESUMEN
Clear cell meningioma represents an uncommon variant of meningioma that typically affects children and young adults. Although an enrichment of loss-of-function mutations in the SMARCE1 gene has been reported for this subtype, comprehensive molecular investigations are lacking. Here we describe a molecularly distinct subset of tumors (n = 31), initially identified through genome-wide DNA methylation screening among a cohort of 3093 meningiomas, of which most were diagnosed histologically as clear cell meningioma. This cohort was further supplemented by an additional 11 histologically diagnosed clear cell meningiomas for analysis (n = 42). Targeted DNA sequencing revealed SMARCE1 mutations in 33/34 analyzed samples, accompanied by a nuclear loss of expression determined via immunohistochemistry and a decreased SMARCE1 transcript expression in the tumor cells. Analysis of time to progression or recurrence of patients within the clear cell meningioma group (n = 14) in comparison to those with meningioma WHO grade 2 (n = 220) revealed a similar outcome and support the assignment of WHO grade 2 to these tumors. Our findings indicate the existence of a highly distinct epigenetic signature of clear cell meningiomas, separate from all other variants of meningiomas, with recurrent mutations in the SMARCE1 gene. This suggests that these tumors may arise from a different precursor cell population than the broad spectrum of the other meningioma subtypes.
Asunto(s)
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Meningioma/genética , Meningioma/patología , Niño , Estudios de Cohortes , Metilación de ADN/genética , Análisis Mutacional de ADN , ADN de Neoplasias/genética , Progresión de la Enfermedad , Epigénesis Genética , Femenino , Estudio de Asociación del Genoma Completo , Humanos , Inmunohistoquímica , Masculino , Mutación/genética , Recurrencia Local de Neoplasia , Resultado del Tratamiento , Adulto JovenRESUMEN
Treatment-related morbidity drives research to identify targetable lesions in children with cancer. Neurotrophic tropomyosin receptor kinase (NTRK) alterations occur in ~1% of pediatric solid tumors. Early phase pediatric trials involving the NTRK inhibitor treatment for progressive NTRK-mutated cancers show promising results. The authors describe the adjuvant maintenance larotrectinib treatment after definitive surgical resection in 2 toddlers with NTRK fusion-positive malignancies (ETV6-NTRK3 fusion-positive undifferentiated embryonal sarcoma of the kidney and NACC2-NTRK2 fusion-positive anaplastic astrocytoma). Both are alive, in remission, developing normally and tolerating larotrectinib 15 months later, thus extending the NTRK inhibitor therapeutic spectrum by describing the adjuvant maintenance larotrectinib treatment in children with NTRK fusion-positive cancers associated with high recurrences.
Asunto(s)
Astrocitoma/tratamiento farmacológico , Neoplasias Renales/tratamiento farmacológico , Quimioterapia de Mantención/métodos , Proteínas de Fusión Oncogénica/genética , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Astrocitoma/genética , Astrocitoma/patología , Quimioterapia Adyuvante , Preescolar , Femenino , Humanos , Neoplasias Renales/genética , Neoplasias Renales/patología , Masculino , Glicoproteínas de Membrana/genética , Proteínas de Neoplasias/genética , Neoplasias de Células Germinales y Embrionarias/tratamiento farmacológico , Neoplasias de Células Germinales y Embrionarias/genética , Neoplasias de Células Germinales y Embrionarias/patología , Pronóstico , Receptor trkB/genética , Proteínas Represoras/genéticaRESUMEN
A 9-year-old girl presented with a 3-day history of progressive proptosis accompanied by transient discomfort and blurry vision in the OD. MRI revealed a heterogeneously enhancing intraconal lesion that partially encased and displaced the optic nerve. There was no intraocular or intracranial involvement, nor were there signs of distant metastasis. Histopathologic evaluation and immunohistochemistry were consistent with orbital medulloepithelioma. The patient received 4 cycles of chemoradiation per a retinoblastoma protocol. Repeat MRI scans showed significant tumor regression, and further surgical debulking was performed. There has been no evidence of recurrence for over 14 months. Herein, the authors describe an eye-sparing, multimodal treatment of a rare case of localized orbital medulloepithelioma.
Asunto(s)
Tumores Neuroectodérmicos Primitivos , Neoplasias de la Retina , Retinoblastoma , Niño , Femenino , Humanos , Terapia Neoadyuvante , Recurrencia Local de Neoplasia , Tumores Neuroectodérmicos Primitivos/diagnóstico , Tumores Neuroectodérmicos Primitivos/terapiaRESUMEN
Paragangliomas are neuroendocrine tumors of the autonomic nervous system that are variably clinically functional and have a potential for metastasis. Up to 40% occur in the setting of a hereditary syndrome, most commonly due to germline mutations in succinate dehydrogenase (SDHx) genes. Immunohistochemically, paragangliomas are characteristically GATA3-positive and cytokeratin-negative, with loss of SDHB expression in most hereditary cases. In contrast, the rare paragangliomas arising in the cauda equina (CEP) or filum terminale region have been shown to be hormonally silent, clinically indolent, and have variable keratin expression, suggesting these tumors may represent a separate pathologic entity. We retrospectively evaluated 17 CEPs from 11 male and 6 female patients with a median age of 38 years (range 21-82), none with a family history of neuroendocrine neoplasia. Six of the 17 tumors demonstrated prominent gangliocytic or ganglioneuromatous differentiation. By immunohistochemistry, none of the CEPs showed GATA3 positivity or loss of SDHB staining; all 17 CEPs were cytokeratin positive. Genome-wide DNA methylation profiling was performed on 12 of the tumors and compared with publicly available genome-wide DNA methylation data. Clustering analysis showed that CEPs form a distinct epigenetic group, separate from paragangliomas of extraspinal sites, pheochromocytomas, and other neuroendocrine neoplasms. Copy number analysis revealed diploid genomes in the vast majority of CEPs, whereas extraspinal paragangliomas were mostly aneuploid with recurrent trisomy 1q and monosomies of 1p, 3, and 11, none of which were present in the cohort of CEP. Together, these findings indicate that CEPs likely represent a distinct entity. Future genomic studies are needed to further elucidate the molecular pathogenesis of these tumors.
Asunto(s)
Cauda Equina/patología , Neoplasias del Sistema Nervioso Central/genética , Variaciones en el Número de Copia de ADN/fisiología , Metilación de ADN/fisiología , Inmunohistoquímica , Paraganglioma/patología , Adulto , Anciano , Anciano de 80 o más Años , Cauda Equina/metabolismo , Femenino , Mutación de Línea Germinal/genética , Mutación de Línea Germinal/fisiología , Humanos , Inmunohistoquímica/métodos , Masculino , Persona de Mediana Edad , Paraganglioma/genética , Adulto JovenRESUMEN
Brain tumors are the most common solid tumors of childhood, and the genetic drivers and optimal therapeutic strategies for many of the different subtypes remain unknown. Here, we identify that bithalamic gliomas harbor frequent mutations in the EGFR oncogene, only rare histone H3 mutation (in contrast to their unilateral counterparts), and a distinct genome-wide DNA methylation profile compared to all other glioma subtypes studied to date. These EGFR mutations are either small in-frame insertions within exon 20 (intracellular tyrosine kinase domain) or missense mutations within exon 7 (extracellular ligand-binding domain) that occur in the absence of accompanying gene amplification. We find these EGFR mutations are oncogenic in primary astrocyte models and confer sensitivity to specific tyrosine kinase inhibitors dependent on location within the kinase domain or extracellular domain. We initiated treatment with targeted kinase inhibitors in four children whose tumors harbor EGFR mutations with encouraging results. This study identifies a promising genomically-tailored therapeutic strategy for bithalamic gliomas, a lethal and genetically distinct brain tumor of childhood.
Asunto(s)
Carcinoma de Pulmón de Células no Pequeñas/genética , Glioma/genética , Mutación/genética , Adolescente , Antineoplásicos/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/genética , Niño , Preescolar , Epigénesis Genética/genética , Receptores ErbB/genética , Femenino , Glioma/tratamiento farmacológico , Humanos , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patología , Masculino , Inhibidores de Proteínas Quinasas/farmacologíaRESUMEN
IDH1 mutation is the earliest genetic alteration in low-grade gliomas (LGGs), but its role in tumor recurrence is unclear. Mutant IDH1 drives overproduction of the oncometabolite d-2-hydroxyglutarate (2HG) and a CpG island (CGI) hypermethylation phenotype (G-CIMP). To investigate the role of mutant IDH1 at recurrence, we performed a longitudinal analysis of 50 IDH1 mutant LGGs. We discovered six cases with copy number alterations (CNAs) at the IDH1 locus at recurrence. Deletion or amplification of IDH1 was followed by clonal expansion and recurrence at a higher grade. Successful cultures derived from IDH1 mutant, but not IDH1 wild type, gliomas systematically deleted IDH1 in vitro and in vivo, further suggestive of selection against the heterozygous mutant state as tumors progress. Tumors and cultures with IDH1 CNA had decreased 2HG, maintenance of G-CIMP, and DNA methylation reprogramming outside CGI. Thus, while IDH1 mutation initiates gliomagenesis, in some patients mutant IDH1 and 2HG are not required for later clonal expansions.
Asunto(s)
Epigenómica , Amplificación de Genes , Glioma/genética , Isocitrato Deshidrogenasa/genética , Mutación , Recurrencia Local de Neoplasia/genética , Eliminación de Secuencia , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Variaciones en el Número de Copia de ADN , Metilación de ADN , Perfilación de la Expresión Génica , Glioma/patología , Glutaratos/metabolismo , Humanos , Isocitrato Deshidrogenasa/metabolismo , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/patología , Células Tumorales CultivadasRESUMEN
Primary CNS tumours refer to a heterogeneous group of tumours arising from cells within the CNS, and can be benign or malignant. Malignant primary brain tumours remain among the most difficult cancers to treat, with a 5 year overall survival no greater than 35%. The most common malignant primary brain tumours in adults are gliomas. Recent advances in molecular biology have improved understanding of glioma pathogenesis, and several clinically significant genetic alterations have been described. A number of these (IDH, 1p/19q codeletion, H3 Lys27Met, and RELA-fusion) are now combined with histology in the revised 2016 WHO classification of CNS tumours. It is likely that understanding such molecular alterations will contribute to the diagnosis, grading, and treatment of brain tumours. This progress in genomics, along with significant advances in cancer and CNS immunology, has defined a new era in neuro-oncology and holds promise for diagntic and therapeutic improvement. The challenge at present is to translate these advances into effective treatments. Current efforts are focused on developing molecular targeted therapies, immunotherapies, gene therapies, and novel drug-delivery technologies. Results with single-agent therapies have been disappointing so far, and combination therapies seem to be required to achieve a broad and durable antitumour response. Biomarker-targeted clinical trials could improve efficiencies of therapeutic development.
Asunto(s)
Neoplasias Encefálicas/genética , Glioma/genética , Adulto , Neoplasias Encefálicas/clasificación , Neoplasias Encefálicas/diagnóstico , Neoplasias Encefálicas/terapia , Glioma/clasificación , Glioma/diagnóstico , Glioma/terapia , Humanos , PronósticoRESUMEN
Meningeal solitary fibrous tumor (SFT)/hemangiopericytoma (HPC) is a rare tumor with propensity for recurrence and metastasis. Although multiple classification schemes have been proposed, optimal risk stratification remains unclear, and the prognostic impact of fusion status is uncertain. We compared the 2016 WHO CNS tumor grading scheme (CNS-G), a three-tier system based on histopathologic phenotype and mitotic count, to the 2013 WHO soft-tissue counterpart (ST-G), a two-tier system based on mitotic count alone, in a cohort of 133 patients [59 female, 74 male; mean age 54 years (range 20-87)] with meningeal SFT/HPC. Tumors were pathologically confirmed through review of the first tumor resection (n = 97), local recurrence (n = 35), or distant metastasis (n = 1). A STAT6 immunostain showed nuclear expression in 132 cases. NAB2-STAT6 fusion was detected in 99 of 111 successfully tested tumors (89%) including the single STAT6 immunonegative tumor. Tumors were classified by CNS-G as grade 1 (n = 43), 2 (n = 41), or 3 (n = 49), and by ST-G as SFT (n = 84) or malignant SFT (n = 49). Necrosis was present in 16 cases (12%). On follow-up, 42 patients had at least one subsequent recurrence or metastasis (7 metastasis only, 33 recurrence only, 2 patients had both). Twenty-nine patients died. On univariate analysis, necrosis (p = 0.002), CNS-G (p = 0.01), and ST-G (p = 0.004) were associated with recurrence-free (RFS) but not overall survival (OS). NAB2-STAT6 fusion type was not significantly associated with RFS or OS, but was associated with phenotype. A modified ST-G incorporating necrosis showed higher correlation with RFS (p = 0.0006) and remained significant (p = 0.02) when considering only the primary tumors. From our data, mitotic rate and necrosis appear to stratify this family of tumors most accurately and could be incorporated in a future grading scheme.
Asunto(s)
Hemangiopericitoma/patología , Neoplasias Meníngeas/patología , Recurrencia Local de Neoplasia/patología , Proteínas Represoras/metabolismo , Adolescente , Adulto , Anciano , Femenino , Fusión Génica/genética , Hemangiopericitoma/genética , Humanos , Masculino , Persona de Mediana Edad , Clasificación del Tumor , Proteínas Represoras/genética , Tumores Fibrosos Solitarios/patología , Adulto JovenRESUMEN
Radiotherapy improves survival for common childhood cancers such as medulloblastoma, leukemia, and germ cell tumors. Unfortunately, long-term survivors suffer sequelae that can include secondary neoplasia. Gliomas are common secondary neoplasms after cranial or craniospinal radiation, most often manifesting as high-grade astrocytomas with poor clinical outcomes. Here, we performed genetic profiling on a cohort of 12 gliomas arising after therapeutic radiation to determine their molecular pathogenesis and assess for differences in genomic signature compared to their spontaneous counterparts. We identified a high frequency of TP53 mutations, CDK4 amplification or CDKN2A homozygous deletion, and amplifications or rearrangements involving receptor tyrosine kinase and Ras-Raf-MAP kinase pathway genes including PDGFRA, MET, BRAF, and RRAS2. Notably, all tumors lacked alterations in IDH1, IDH2, H3F3A, HIST1H3B, HIST1H3C, TERT (including promoter region), and PTEN, which genetically define the major subtypes of diffuse gliomas in children and adults. All gliomas in this cohort had very low somatic mutation burden (less than three somatic single nucleotide variants or small indels per Mb). The ten high-grade gliomas demonstrated markedly aneuploid genomes, with significantly increased quantity of intrachromosomal copy number breakpoints and focal amplifications/homozygous deletions compared to spontaneous high-grade gliomas, likely as a result of DNA double-strand breaks induced by gamma radiation. Together, these findings demonstrate a distinct molecular pathogenesis of secondary gliomas arising after radiation therapy and identify a genomic signature that may aid in differentiating these tumors from their spontaneous counterparts.
Asunto(s)
Astrocitoma/genética , Neoplasias Encefálicas/genética , Glioma/genética , Glioma/radioterapia , Adolescente , Adulto , Astrocitoma/radioterapia , Biomarcadores de Tumor/genética , Neoplasias Encefálicas/radioterapia , Niño , Preescolar , Femenino , Genómica , Homocigoto , Humanos , Masculino , Mutación/genética , Eliminación de Secuencia/genética , Telomerasa/genética , Adulto JovenRESUMEN
Rosette-forming glioneuronal tumor (RGNT) most commonly occurs adjacent to the fourth ventricle and therefore rarely presents with epilepsy. Recent reports describe RGNT occurrence in other anatomical locations with considerable morphologic and genetic overlap with the epilepsy-associated dysembryoplastic neuroepithelial tumor (DNET). Examples of RGNT or DNET with anaplastic change are rare, and typically occur in the setting of radiation treatment. We present the case of a 5-year-old girl with seizures, who underwent near total resection of a cystic temporal lobe lesion. Pathology showed morphologic and immunohistochemical features of RGNT, albeit with focally overlapping DNET-like patterns. Resections of residual or recurrent tumor were performed 1 year and 5 years after the initial resection, but no adjuvant radiation or chemotherapy was given. Ten years after the initial resection, surveillance imaging identified new and enhancing nodules, leading to another gross total resection. This specimen showed areas similar to the original tumor, but also high-grade foci with oligodendroglial morphology, increased cellularity, palisading necrosis, microvascular proliferation, and up to 13 mitotic figures per 10 high power fields. Ancillary studies the status by sequencing showed wild-type of the isocitrate dehydrogenase 1 (IDH1), IDH2, and human histone 3.3 (H3F3A) genes, and BRAF studies were negative for mutation or rearrangement. Fluorescence in situ hybridization (FISH) showed codeletion of 1p and 19q limited to the high-grade regions. By immunohistochemistry there was loss of nuclear alpha-thalassemia mental retardation syndrome, X-linked (ATRX) expression only in the high-grade region. Next-generation sequencing showed an fibroblast growth factor receptor receptor 1 (FGFR1) kinase domain internal tandem duplication in three resection specimens. ATRX mutation in the high-grade tumor was confirmed by sequencing which showed a frameshift mutation (p.R1427fs), while the apparent 1p/19q-codeletion by FISH was due to loss of chromosome arm 1p and only partial loss of 19q. Exceptional features of this case include the temporal lobe location, 1p/19q loss by FISH without true whole-arm codeletion, and anaplastic transformation associated with ATRX mutation without radiation or chemotherapy.
Asunto(s)
Neoplasias Encefálicas/patología , Transformación Celular Neoplásica/genética , Neoplasias Neuroepiteliales/patología , Lóbulo Temporal/patología , Proteína Nuclear Ligada al Cromosoma X/genética , Neoplasias Encefálicas/complicaciones , Neoplasias Encefálicas/genética , Preescolar , Epilepsia/etiología , Femenino , Humanos , Mutación , Recurrencia Local de Neoplasia/complicaciones , Recurrencia Local de Neoplasia/patología , Neoplasias Neuroepiteliales/complicaciones , Neoplasias Neuroepiteliales/genéticaRESUMEN
BACKGROUND: Medulloblastoma is associated with rare hereditary cancer predisposition syndromes; however, consensus medulloblastoma predisposition genes have not been defined and screening guidelines for genetic counselling and testing for paediatric patients are not available. We aimed to assess and define these genes to provide evidence for future screening guidelines. METHODS: In this international, multicentre study, we analysed patients with medulloblastoma from retrospective cohorts (International Cancer Genome Consortium [ICGC] PedBrain, Medulloblastoma Advanced Genomics International Consortium [MAGIC], and the CEFALO series) and from prospective cohorts from four clinical studies (SJMB03, SJMB12, SJYC07, and I-HIT-MED). Whole-genome sequences and exome sequences from blood and tumour samples were analysed for rare damaging germline mutations in cancer predisposition genes. DNA methylation profiling was done to determine consensus molecular subgroups: WNT (MBWNT), SHH (MBSHH), group 3 (MBGroup3), and group 4 (MBGroup4). Medulloblastoma predisposition genes were predicted on the basis of rare variant burden tests against controls without a cancer diagnosis from the Exome Aggregation Consortium (ExAC). Previously defined somatic mutational signatures were used to further classify medulloblastoma genomes into two groups, a clock-like group (signatures 1 and 5) and a homologous recombination repair deficiency-like group (signatures 3 and 8), and chromothripsis was investigated using previously established criteria. Progression-free survival and overall survival were modelled for patients with a genetic predisposition to medulloblastoma. FINDINGS: We included a total of 1022 patients with medulloblastoma from the retrospective cohorts (n=673) and the four prospective studies (n=349), from whom blood samples (n=1022) and tumour samples (n=800) were analysed for germline mutations in 110 cancer predisposition genes. In our rare variant burden analysis, we compared these against 53â105 sequenced controls from ExAC and identified APC, BRCA2, PALB2, PTCH1, SUFU, and TP53 as consensus medulloblastoma predisposition genes according to our rare variant burden analysis and estimated that germline mutations accounted for 6% of medulloblastoma diagnoses in the retrospective cohort. The prevalence of genetic predispositions differed between molecular subgroups in the retrospective cohort and was highest for patients in the MBSHH subgroup (20% in the retrospective cohort). These estimates were replicated in the prospective clinical cohort (germline mutations accounted for 5% of medulloblastoma diagnoses, with the highest prevalence [14%] in the MBSHH subgroup). Patients with germline APC mutations developed MBWNT and accounted for most (five [71%] of seven) cases of MBWNT that had no somatic CTNNB1 exon 3 mutations. Patients with germline mutations in SUFU and PTCH1 mostly developed infant MBSHH. Germline TP53 mutations presented only in childhood patients in the MBSHH subgroup and explained more than half (eight [57%] of 14) of all chromothripsis events in this subgroup. Germline mutations in PALB2 and BRCA2 were observed across the MBSHH, MBGroup3, and MBGroup4 molecular subgroups and were associated with mutational signatures typical of homologous recombination repair deficiency. In patients with a genetic predisposition to medulloblastoma, 5-year progression-free survival was 52% (95% CI 40-69) and 5-year overall survival was 65% (95% CI 52-81); these survival estimates differed significantly across patients with germline mutations in different medulloblastoma predisposition genes. INTERPRETATION: Genetic counselling and testing should be used as a standard-of-care procedure in patients with MBWNT and MBSHH because these patients have the highest prevalence of damaging germline mutations in known cancer predisposition genes. We propose criteria for routine genetic screening for patients with medulloblastoma based on clinical and molecular tumour characteristics. FUNDING: German Cancer Aid; German Federal Ministry of Education and Research; German Childhood Cancer Foundation (Deutsche Kinderkrebsstiftung); European Research Council; National Institutes of Health; Canadian Institutes for Health Research; German Cancer Research Center; St Jude Comprehensive Cancer Center; American Lebanese Syrian Associated Charities; Swiss National Science Foundation; European Molecular Biology Organization; Cancer Research UK; Hertie Foundation; Alexander and Margaret Stewart Trust; V Foundation for Cancer Research; Sontag Foundation; Musicians Against Childhood Cancer; BC Cancer Foundation; Swedish Council for Health, Working Life and Welfare; Swedish Research Council; Swedish Cancer Society; the Swedish Radiation Protection Authority; Danish Strategic Research Council; Swiss Federal Office of Public Health; Swiss Research Foundation on Mobile Communication; Masaryk University; Ministry of Health of the Czech Republic; Research Council of Norway; Genome Canada; Genome BC; Terry Fox Research Institute; Ontario Institute for Cancer Research; Pediatric Oncology Group of Ontario; The Family of Kathleen Lorette and the Clark H Smith Brain Tumour Centre; Montreal Children's Hospital Foundation; The Hospital for Sick Children: Sonia and Arthur Labatt Brain Tumour Research Centre, Chief of Research Fund, Cancer Genetics Program, Garron Family Cancer Centre, MDT's Garron Family Endowment; BC Childhood Cancer Parents Association; Cure Search Foundation; Pediatric Brain Tumor Foundation; Brainchild; and the Government of Ontario.
Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Cerebelosas/genética , Metilación de ADN , Pruebas Genéticas/métodos , Mutación de Línea Germinal , Meduloblastoma/genética , Modelos Genéticos , Adolescente , Adulto , Neoplasias Cerebelosas/mortalidad , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/terapia , Niño , Preescolar , Análisis Mutacional de ADN , Femenino , Perfilación de la Expresión Génica , Predisposición Genética a la Enfermedad , Herencia , Humanos , Lactante , Masculino , Meduloblastoma/mortalidad , Meduloblastoma/patología , Meduloblastoma/terapia , Linaje , Fenotipo , Valor Predictivo de las Pruebas , Supervivencia sin Progresión , Estudios Prospectivos , Reproducibilidad de los Resultados , Estudios Retrospectivos , Factores de Riesgo , Transcriptoma , Secuenciación del Exoma , Adulto JovenRESUMEN
BACKGROUND: The prediction of clinical behavior, response to therapy, and outcome of infiltrative glioma is challenging. On the basis of previous studies of tumor biology, we defined five glioma molecular groups with the use of three alterations: mutations in the TERT promoter, mutations in IDH, and codeletion of chromosome arms 1p and 19q (1p/19q codeletion). We tested the hypothesis that within groups based on these features, tumors would have similar clinical variables, acquired somatic alterations, and germline variants. METHODS: We scored tumors as negative or positive for each of these markers in 1087 gliomas and compared acquired alterations and patient characteristics among the five primary molecular groups. Using 11,590 controls, we assessed associations between these groups and known glioma germline variants. RESULTS: Among 615 grade II or III gliomas, 29% had all three alterations (i.e., were triple-positive), 5% had TERT and IDH mutations, 45% had only IDH mutations, 7% were triple-negative, and 10% had only TERT mutations; 5% had other combinations. Among 472 grade IV gliomas, less than 1% were triple-positive, 2% had TERT and IDH mutations, 7% had only IDH mutations, 17% were triple-negative, and 74% had only TERT mutations. The mean age at diagnosis was lowest (37 years) among patients who had gliomas with only IDH mutations and was highest (59 years) among patients who had gliomas with only TERT mutations. The molecular groups were independently associated with overall survival among patients with grade II or III gliomas but not among patients with grade IV gliomas. The molecular groups were associated with specific germline variants. CONCLUSIONS: Gliomas were classified into five principal groups on the basis of three tumor markers. The groups had different ages at onset, overall survival, and associations with germline variants, which implies that they are characterized by distinct mechanisms of pathogenesis. (Funded by the National Institutes of Health and others.).