Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
J Med Virol ; 96(6): e29756, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38899468

RESUMEN

In intensive care units, COVID-19 viral pneumonia patients (VPP) present symptoms similar to those of other patients with Nonviral infection (NV-ICU). To better manage VPP, it is therefore interesting to better understand the molecular pathophysiology of viral pneumonia and to search for biomarkers that may clarify the diagnosis. The secretome being a set of proteins secreted by cells in response to stimuli represents an opportunity to discover new biomarkers. The objective of this study is to identify the secretomic signatures of VPP with those of NV-ICU. Plasma samples and clinical data from NV-ICU (n = 104), VPP (n = 30) or healthy donors (HD, n = 20) were collected at Nantes Hospital (France) upon admission. Samples were enriched for the low-abundant proteins and analyzed using nontarget mass spectrometry. Specifically deregulated proteins (DEP) in VPP versus NV-ICU were selected. Combinations of 2 to 4 DEPs were established. The differences in secretome profiles of the VPP and NV-ICU groups were highlighted. Forty-one DEPs were specifically identified in VPP compared to NV-ICU. We describe five of the best combinations of 3 proteins (complement component C9, Ficolin-3, Galectin-3-binding protein, Fibrinogen alpha, gamma and beta chain, Proteoglycan 4, Coagulation factor IX and Cdc42 effector protein 4) that show a characteristic receptor function curve with an area under the curve of 95.0%. This study identifies five combinations of candidate biomarkers in VPP compared to NV-ICU that may help distinguish the underlying causal molecular alterations.


Asunto(s)
Biomarcadores , COVID-19 , Unidades de Cuidados Intensivos , Humanos , COVID-19/diagnóstico , COVID-19/complicaciones , COVID-19/sangre , Masculino , Femenino , Persona de Mediana Edad , Biomarcadores/sangre , Anciano , Proteómica/métodos , SARS-CoV-2 , Adulto , Neumonía Viral/diagnóstico , Neumonía Viral/virología , Neumonía Viral/sangre , Francia/epidemiología
2.
Int J Mol Sci ; 25(6)2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38542290

RESUMEN

Anaphylactic shock (AS) is the most severe form of acute systemic hypersensitivity reaction. Although epinephrine can restore patients' hemodynamics, it might also be harmful, supporting the need for adjuvant treatment. We therefore investigated whether NButGT, enhancing O-GlcNAcylation and showing beneficial effects in acute heart failure might improve AS therapy. Ovalbumin-sensitized rats were randomly allocated to six groups: control (CON), shock (AS), shock treated with NButGT alone before (AS+pre-Nbut) or after (AS+post-Nbut) AS onset, shock treated with epinephrine alone (AS+EPI) and shock group treated with combination of epinephrine and NButGT (AS+EPI+preNBut). Induction of shock was performed with an intravenous (IV) ovalbumin. Cardiac protein and cycling enzymes O-GlcNAcylation levels, mean arterial pressure (MAP), heart rate, cardiac output (CO), left ventricle shortening fraction (LVSF), mitochondrial respiration, and lactatemia were evaluated using Western blotting experiments, invasive arterial monitoring, echocardiography, mitochondrial oximetry and arterial blood samples. AS decreased MAP (-77%, p < 0.001), CO (-90%, p < 0.001) and LVSF (-30%, p < 0.05). Epinephrine improved these parameters and, in particular, rats did not die in 15 min. But, cardiac mitochondrial respiration remained impaired (complexes I + II -29%, p < 0.05 and II -40%, p < 0.001) with hyperlactatemia. NButGT pretreatment (AS+pre-Nbut) efficiently increased cardiac O-GlcNAcylation level as compared to the AS+post-Nbut group. Compared to epinephrine alone, the adjunction of NButGT significantly improved CO, LVSF and mitochondrial respiration. MAP was not significantly increased but lactatemia decreased more markedly. Pretreatment with NButGT increases O-GlcNAcylation of cardiac proteins and has an additive effect on epinephrine, improving cardiac output and mitochondrial respiration and decreasing blood lactate levels. This new therapy might be useful when the risk of AS cannot be avoided.


Asunto(s)
Anafilaxia , Compuestos Bicíclicos Heterocíclicos con Puentes , Humanos , Ratas , Animales , Anafilaxia/tratamiento farmacológico , Ovalbúmina/farmacología , Epinefrina/farmacología , Gasto Cardíaco , Hemodinámica , Respiración
3.
Heliyon ; 10(9): e30526, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38737268

RESUMEN

Background: Dietary intake and metabolism variations are associated with molecular changes and more particularly in the transcriptome. O-GlcNAcylation is a post-translational modification added and removed respectively by OGT and OGA. The UDP-GlcNAc, the substrate of OGT, is produced by UAP1 and UAP1L1. O-GlcNAcylation is qualified as a metabolic sensor and is involved in the modulation of gene expression. We wanted to unveil if O-GlcNAcylation is linking metabolic transition to transcriptomic changes and to highlight modifications of O-GlcNAcylation during the postnatal cardiac development. Methods: Hearts were harvested from rats at birth (D0), before (D12) and after suckling to weaning transition with normal (D28) or delayed weaning diet from D12 to D28 (D28F). O-GlcNAcylation levels and proteins expression were evaluated by Western blot. Cardiac transcriptomes were evaluated via 3'SRP analysis. Results: Cardiac O-GlcNAcylation levels and nucleocytoplasmic OGT (ncOGT) were decreased at D28 while full length OGA (OGA) was increased. O-GlcNAcylation levels did not changed with delayed weaning diet while ncOGT and OGA were respectively increased and decreased. Uapl1 was the only O-GlcNAcylation-related gene identified as differentially expressed throughout postnatal development. Conclusion: Macronutrients switch promotes changes in the transcriptome landscape that are independent from O-GlcNAcylation levels. UAP1 and UAP1L1 are not the main regulator element of O-GlcNAcylation throughout postnatal development.

4.
ASAIO J ; 70(6): 535-544, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38165978

RESUMEN

Microfluidic membrane oxygenators are designed to mimic branching vasculature of the native lung during extracorporeal lung support. To date, scaling of such devices to achieve clinically relevant blood flow and lung support has been a limitation. We evaluated a novel multilayer microfluidic blood oxygenator (BLOx) capable of supporting 750-800 ml/min blood flow versus a standard hollow fiber membrane oxygenator (HFMO) in vivo during veno-venous extracorporeal life support for 24 hours in anesthetized, mechanically ventilated uninjured swine (n = 3/group). The objective was to assess feasibility, safety, and biocompatibility. Circuits remained patent and operated with stable pressures throughout 24 hours. No group differences in vital signs or evidence of end-organ damage occurred. No change in plasma free hemoglobin and von Willebrand factor multimer size distribution were observed. Platelet count decreased in BLOx at 6 hours (37% dec, P = 0.03), but not in HFMO; however, thrombin generation potential was elevated in HFMO (596 ± 81 nM·min) versus BLOx (323 ± 39 nM·min) at 24 hours ( P = 0.04). Other coagulation and inflammatory mediator results were unremarkable. BLOx required higher mechanical ventilator settings and showed lower gas transfer efficiency versus HFMO, but the stable device performance indicates that this technology is ready for further performance scaling and testing in lung injury models and during longer use conditions.


Asunto(s)
Estudios de Factibilidad , Oxigenadores de Membrana , Animales , Porcinos , Oxigenación por Membrana Extracorpórea/instrumentación , Oxigenación por Membrana Extracorpórea/métodos , Oxigenación por Membrana Extracorpórea/efectos adversos , Unidades de Cuidados Intensivos , Microfluídica/métodos , Microfluídica/instrumentación
5.
J Vis Exp ; (205)2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38587369

RESUMEN

Over the recent decades, the development of animal models allowed us to better understand various pathologies and identify new treatments. Hemorrhagic shock, i.e., organ failure due to rapid loss of a large volume of blood, is associated with a highly complex pathophysiology involving several pathways. Numerous existing animal models of hemorrhagic shock strive to replicate what happens in humans, but these models have limits in terms of clinical relevance, reproducibility, or standardization. The aim of this study was to refine these models to develop a new model of hemorrhagic shock. Briefly, hemorrhagic shock was induced in male Wistar Han rats (11-13 weeks old) by a controlled exsanguination responsible for a drop in the mean arterial pressure. The next phase of 75 min was to maintain a low mean arterial blood pressure, between 32 mmHg and 38 mmHg, to trigger the pathophysiological pathways of hemorrhagic shock. The final phase of the protocol mimicked patient care with an administration of intravenous fluids, Ringer Lactate solution, to elevate the blood pressure. Lactate and behavioral scores were assessed 16 h after the protocol started, while hemodynamics parameters and plasmatic markers were evaluated 24 h after injury. Twenty-four hours post-hemorrhagic shock induction, the mean arterial and diastolic blood pressure were decreased in the hemorrhagic shock group (p < 0.05). Heart rate and systolic blood pressure remained unchanged. All organ damage markers were increased with the hemorrhagic shock (p < 0.05). The lactatemia and behavioral scores were increased compared to the sham group (p < 0.05). In conclusion, we demonstrated that the protocol described here is a relevant model of hemorrhagic shock that can be used in subsequent studies, particularly to evaluate the therapeutic potential of new molecules.


Asunto(s)
Choque Hemorrágico , Ratas , Masculino , Humanos , Animales , Ratas Wistar , Reproducibilidad de los Resultados , Resucitación/métodos , Soluciones Isotónicas/uso terapéutico , Lactatos , Modelos Animales de Enfermedad
6.
Sci Rep ; 14(1): 10669, 2024 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-38724577

RESUMEN

Anaesthetics are used daily in human and veterinary medicine as well as in scientific research. Anaesthetics have an impact on cell homeostasis especially through modulation of protein post-translational modifications. O-GlcNAcylation, a ubiquitous post-translational modification, plays a role in many biological processes. The aims of this study were to evaluate whether (1) anaesthesia influences O-GlcNAcylation and (2) its stimulation affects physiological parameters. Male Wistar rats (n = 38) were anaesthetized with ketamine-xylazine or isoflurane. They randomly received either an intravenous injection of Ringer's lactate or NButGT (10mg/kg) in order to increase O-GlcNAcylation levels. One hour after induction of anaesthesia, haemodynamic parameters and plasmatic markers were evaluated. Heart, brain and lungs were harvested and O-GlcNAcylation levels and O-GlcNAc-related enzymes were evaluated by western blot. Cardiac and pulmonary O-GlcNAcylation levels and cardiac, cerebral and pulmonary O-GlcNAc associated enzyme expression were not impacted with anaesthesia. Compared with ketamine-xylazine, isoflurane had a lower impact on blood pressure, heart rate and glycaemia. Pharmacological stimulation of O-GlcNAcylation by NButGT did not affect the physiological parameters. This study offers unprecedented insights into the regulation of O-GlcNAcylation and O-GlcNAc related enzymes during anaesthesia. Pharmacological stimulation of O-GlcNAcylation over a 1-h period did not disrupt the physiological balance in healthy anaesthetized rats.


Asunto(s)
Isoflurano , Ketamina , Ratas Wistar , Xilazina , Animales , Masculino , Ratas , Isoflurano/farmacología , Ketamina/farmacología , Xilazina/farmacología , Anestesia , Acetilglucosamina/metabolismo , Procesamiento Proteico-Postraduccional , Encéfalo/metabolismo , N-Acetilglucosaminiltransferasas/metabolismo , Frecuencia Cardíaca/efectos de los fármacos , Pulmón/metabolismo , Anestésicos/farmacología , Presión Sanguínea/efectos de los fármacos , Hemodinámica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda