Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Diabetes ; 52(9): 2213-20, 2003 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-12941759

RESUMEN

To determine the mechanism(s) by which insulin inhibits endogenous glucose production (EGP) in nondiabetic humans, insulin was infused at rates of 0.25, 0.375, or 0.5 mU. kg(-1). min(-1) and glucose was clamped at approximately 5.5 mmol/l. EGP, gluconeogenesis, and uridine-diphosphoglucose (UDP)-glucose flux were measured using [3-(3)H]glucose, deuterated water, and the acetaminophen glucuronide methods, respectively. An increase in insulin from approximately 75 to approximately 100 to approximately 150 pmol/l ( approximately 12.5 to approximately 17 to approximately 25 microU/ml) resulted in progressive (ANOVA; P < 0.02) suppression of EGP (13.1 +/- 1.3 vs. 11.7 +/- 1.03 vs. 6.4 +/- 2.15 micromol x kg(-1) x min(-1)) that was entirely due to a progressive decrease (ANOVA; P < 0.05) in the contribution of glycogenolysis to EGP (4.7 +/- 1.7 vs. 3.4 +/- 1.2 vs. -2.1 +/- 1.3 micro mol x kg(-1) x min(-1)). In contrast, both the contribution of gluconeogenesis to EGP (8.4 +/- 1.0 vs. 8.3 +/- 1.1 vs. 8.5 +/- 1.3 micro mol x kg(-1) x min(-1)) and UDP-glucose flux (5.0 +/- 0.4 vs. 5.0 +/- 0.3 vs. 4.0 +/- 0.5 micro mol x kg(-1) x min(-1)) remained unchanged. The contribution of the direct (extracellular) pathway to UDP-glucose flux was minimal and constant during all insulin infusions. We conclude that higher insulin concentrations are required to suppress the contribution of gluconeogenesis of EGP than are required to suppress the contribution of glycogenolysis to EGP in healthy nondiabetic humans. Since suppression of glycogenolysis occurred without a decrease in UDP-glucose flux, this implies that insulin inhibits EGP, at least in part, by directing glucose-6-phosphate into glycogen rather than through the glucose-6-phosphatase pathway.


Asunto(s)
Gluconeogénesis/efectos de los fármacos , Glucógeno/metabolismo , Hipoglucemiantes/administración & dosificación , Insulina/administración & dosificación , Adulto , Glucemia , Péptido C/sangre , Femenino , Glucagón/administración & dosificación , Glucagón/sangre , Glucosa/biosíntesis , Glucosa/farmacocinética , Hormonas/administración & dosificación , Hormona de Crecimiento Humana/sangre , Humanos , Hipoglucemiantes/sangre , Insulina/sangre , Masculino , Somatostatina/administración & dosificación , Tritio , Uridina Difosfato Glucosa/farmacocinética , Agua
2.
Kidney Int ; 62(2): 392-400, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12110000

RESUMEN

BACKGROUND: Hyperoxaluria may be idiopathic, secondary, or due to primary hyperoxaluria (PH). Hepatic alanine:glyoxylate aminotransferase (AGT) or glyoxylate/hydroxypyruvate reductase (GR/HPR) deficiency causes PHI or PHII, respectively. Hepatic glycolate oxidase (GO) is a candidate enzyme for a third form of inherited hyperoxaluria. METHODS: Six children were identified with marked hyperoxaluria, urolithiasis, and normal hepatic AGT (N = 5) and GR/HPR (N = 4). HPR was below normal and GR not measured in one. Of an affected sibling pair, only one underwent biopsy. GO mutation screening was performed, and dietary oxalate (Diet(ox)), enteric oxalate absorption (EOA) measured using [13C2] oxalate, renal clearance (GFR), fractional oxalate excretion (FE(ox)) in the children, and urine oxalate in first-degree relatives (FDR) to understand the etiology of the hyperoxaluria. RESULTS: Mean presenting age was 19.2 months and urine oxalate 1.3 +/- 0.5 mmol/1.73 m2/24 h (mean +/- SD). Two GO sequence changes (T754C, IVS3 - 49 C>G) were detected which were not linked to the hyperoxaluria. Diet(ox) was 42 +/- 31 mg/day. EOA was 9.4 +/- 3.6%, compared with 7.6 +/- 1.2% in age-matched controls (P = 0.33). GFR was 90 +/- 19 mL/min/1.73 m2 and FE(ox) 4.2 +/- 1.4. Aside from the two brothers, hyperoxaluria was not found in FDR. CONCLUSIONS: These patients illustrate a novel form of hyperoxaluria and urolithiasis, without excess Diet(ox), enteric hyper-absorption, or hepatic AGT, GR/HPR deficiency. Alterations in pathways of oxalate synthesis, in liver or kidney, or in renal tubular oxalate handling are possible explanations. The affected sibling pair suggests an inherited basis.


Asunto(s)
Hiperoxaluria/genética , Hiperoxaluria/metabolismo , Oxidorreductasas de Alcohol/genética , Calcio de la Dieta/orina , Preescolar , Salud de la Familia , Femenino , Glioxilatos/metabolismo , Humanos , Hiperoxaluria Primaria , Lactante , Masculino , Datos de Secuencia Molecular , Oxalatos/orina , Linaje , Fosfatos/orina , Cálculos Urinarios/genética , Cálculos Urinarios/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda