Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Chemphyschem ; 25(9): e202400080, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38351426

RESUMEN

Isomorphic substitution of zeolites with B, Al and Ga is a widely used approach in catalysis. The experimentally reported trend of their acidities decreases in the order: Al>Ga>B. However, a consistent explanation is still lacking in the literature. To bring more understanding of this trend, density functional theory computations were conducted on several model systems. First, the acidity of small clusters with two (2T) and five (5T) tetrahedral sites was analyzed. These systems were then projected onto three large void structures: H-[A]-BEA (52T), H-[A]-FAU (84T) and H-[A]-MOR (112T) with A=B, Al, Ga. Our electron density and Interacting Quantum Atom analyses show that the acidity of Al zeolites originates from the much stronger O-Al bond, which is dominated by the electrostatic attraction. The bridging hydroxyl therefore donates more charge density to the metal, the proton becomes more positive and consequently more acidic. Ga zeolites are more acidic than B zeolites due to the greater covalent nature on the O-Ga bond. The resulting acidity, as seen by ammonia, depends on both the acidic oxygen and the charge distribution of the surrounding oxygens exerted by the substituents.

2.
Chemphyschem ; 24(7): e202200768, 2023 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-36515410

RESUMEN

The use of real space functions and molecular graphs has pushed some chemists to wonder: Are interactions between negatively charged oxygen atoms possible? In this contribution we analyze whether there is a real interaction between oxygen atoms in nitryl halide dimers (XNO2 )2 (X=F, Cl, Br and I) and in tetranitromethane and derivatives. Based on ab-initio and density functional theories (DFT) methods, we show these complexes are weakly stabilized. Energy decomposition analyses based on local molecular orbitals (LMOEDA) and interacting quantum atoms (IQA) reveal both dispersion and exchange play a crucial role in the stabilization of these complexes. Electron charge density and IQA analyses indicate that the oxygen atoms are connected by privileged exchange channels. In addition, electrostatic interactions between O and N atoms are also vital for the stabilization of the complexes. Finally, a reasonable explanation is given for the dynamic behavior of nitryl groups in tetranitromethane and derivatives.

3.
Chemphyschem ; 23(13): e202200151, 2022 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-35420735

RESUMEN

Melamine (M) is a popular triamine triazine compound in the field of supramolecular materials. In this work, we have computationally investigated how substituents can be exploited to improve the binding strength of M supramolecules. Two types of covalent modifications were studied: the substitution of an H atom within an amine group -NHR, and the replacement of the whole -NH2 group (R=H, F, CH3 and COCH3 ). Through our dispersion-corrected density functional theory computations, we explain which covalent modification will show the best self-assembling capabilities, and why the binding energy is enhanced. Our charge density and molecular orbital analyses indicate that the best substituents are those that generate a charge accumulation on the endocyclic N atom, providing an improvement of the electrostatic attraction. At the same time the substituent assists the main N-H⋅⋅⋅N hydrogen bonds by interacting with the amino group of the other monomer. We also show how the selected group notably boosts the strength of hexameric rosettes. This research, therefore, provides molecular tools for the rational design of emerging materials based on uneven hydrogen-bonded arrangements.


Asunto(s)
Hidrógeno , Hidrógeno/química , Enlace de Hidrógeno
4.
J Chem Inf Model ; 62(24): 6494-6507, 2022 12 26.
Artículo en Inglés | MEDLINE | ID: mdl-36044012

RESUMEN

Protein pockets that form a halogen bond (X-bond) with a halogenated ligand molecule simultaneously form other (mainly hydrophobic) interactions with the halogen atom that can be considered as its "X-bond environment" (XBenv). Most studies in the field have focused on the X-bond, with the properties of the XBenv usually overlooked. In this work, we derived a protocol that evaluates the XBenv strength as a measure of the propensity of a protein pocket to host an X-bond. The charge density-based topological descriptors in combination with machine learning tools were employed to predict formation and strength of the interactions that conform the XBenv as a function of their geometrical parameters. On the basis of these results, we propose that the XBenv can be used as a footprint to judge the chance of a protein pocket to form an X-bond.


Asunto(s)
Halógenos , Proteínas , Halógenos/química , Proteínas/química , Ligandos
5.
Chemphyschem ; 22(7): 665-674, 2021 04 07.
Artículo en Inglés | MEDLINE | ID: mdl-33538090

RESUMEN

Due to their potential binding sites, barbituric acid (BA) and its derivatives have been used in metal coordination chemistry. Yet their abilities to recognize anions remain unexplored. In this work, we were able to identify four structural features of barbiturates that are responsible for a certain anion affinity. The set of coordination interactions can be finely tuned with covalent decorations at the methylene group. DFT-D computations at the BLYP-D3(BJ)/aug-cc-pVDZ level of theory show that the C-H bond is as effective as the N-H bond to coordinate chloride. An analysis of the electron charge density at the C-H⋅⋅⋅Cl- and N-H⋅⋅⋅Cl- bond critical points elucidates their similarities in covalent character. Our results reveal that the special acidity of the C-H bond shows up when the methylene group moves out of the ring plane and it is mainly governed by the orbital interaction energy. The amide and carboxyl groups are the best choices to coordinate the ion when they act together with the C-H bond. We finally show how can we use this information to rationally improve the recognition capability of a small cage-like complex that is able to coordinate NaCl.

6.
J Comput Chem ; 41(21): 1898-1911, 2020 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-32511790

RESUMEN

We report an exhaustive conformational and electronic study on dopamine (DA) interacting with the D2 dopamine receptor (D2 DR). For the first time, the complete surface of the conformational potential energy of the complex DA/D2 DR is reported. Such a surface was obtained through the use of QM/MM calculations. A detailed study of the molecular interactions that stabilize and destabilize the different molecular complexes was carried out using two techniques: Quantum Theory of Atoms in Molecules computations and nuclear magnetic shielding constants calculations. A comparative study of the behavior of DA in the gas phase, aqueous solution, and in the active site of D2 DR has allowed us to evaluate the degree of deformation suffered by the ligand and, therefore, analyze how rustic are the lock-key model and the induced fit theory in this case. Our results allow us to propose one of the conformations obtained as the "biologically relevant" conformation of DA when it is interacting with the D2 DR.


Asunto(s)
Teoría Funcional de la Densidad , Dopamina/química , Receptores de Dopamina D2/química , Electrones , Humanos , Conformación Molecular , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
7.
Phys Chem Chem Phys ; 21(16): 8205-8214, 2019 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-30854534

RESUMEN

Supramolecular cavities can be found in clathrates and self-assembling capsules. In these computational experiments, we studied the effect of folding planar hydrogen-bonded supramolecules of melamine (M) and cyanuric acid (CA) into stable cage-like quartets. Based on dispersion-corrected density functional theory calculations at the ωB97XD/6-311++G(d,p) level, we show the flexibility of M and CA molecules to form free confined spaces. Our bonding analysis indicates that only CA can form a cage, which is more stable than its planar systems. We then studied the capacity of the complexes to host ionic and neutral monoatomic species like Na+, Cl- and Ar. The encapsulation energies range from -2 to -65 kcal mol-1. A detailed energy decomposition analysis (EDA) supports the fact that the triazine ring of CA is superior to the M one for capturing chloride ions. In addition, the EDA and the topology of the electron density, by means of the Atoms in Molecules (AIM) theory and electrostatic potential maps, reveal the nature of the host-guest interactions in the confined space. The CA cluster appears to be the best multimolecular inclusion compound because it can host the three species and keep its cage structure, and therefore it could also act as a dual receptor of the ionic pair Na+Cl-. We think these findings could inspire the design of new heteromolecular inclusion compounds based on triazines and hydrogen bonds.

8.
Chemphyschem ; 18(23): 3498-3503, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-28851102

RESUMEN

High-level quantum chemical calculations are performed to investigate C=Se⋅⋅⋅Se=C interactions. Bounded structures are found with binding energies between -4 and -7 kJ mol-1 . An energy decomposition analysis shows that dispersion is the more attractive term, and in all cases save one, the electrostatic interaction is attractive despite each selenium atom having a positive σ-hole at the extension of the C=Se bond. The topological analysis of the molecular electrostatic potential and L(r)=-∇2 ρ(r) function, and natural bond orbital analysis reveal that these particular Se⋅⋅⋅Se contacts can be considered to be quadruple Lewis acid-base interactions.

9.
Molecules ; 22(11)2017 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-29165403

RESUMEN

In the present work an in depth deep electronic study of multicenter XBs (FX)n/NH3 (X = Cl, Br and n = 1-5) is conducted. The ways in which X∙∙∙X lateral contacts affect the electrostatic or covalent nature of the X∙∙∙N interactions are explored at the CCSD(T)/aug-cc-pVTZ level and in the framework of the quantum theory of atoms in molecules (QTAIM). Calculations show that relatively strong XBs have been found with interaction energies lying between -41 and -90 kJ mol-1 for chlorine complexes, and between -56 and -113 kJ mol-1 for bromine complexes. QTAIM parameters reveal that in these complexes: (i) local (kinetics and potential) energy densities measure the ability that the system has to concentrate electron charge density at the intermolecular X∙∙∙N region; (ii) the delocalization indices [δ(A,B)] and the exchange contribution [VEX(X,N)] of the interacting quantum atoms (IQA) scheme, could constitute a quantitative measure of the covalence of these molecular interactions; (iii) both classical electrostatic and quantum exchange show high values, indicating that strong ionic and covalent contributions are not mutually exclusive.


Asunto(s)
Halógenos/química , Algoritmos , Cinética , Modelos Químicos , Modelos Moleculares , Conformación Molecular
10.
Phys Chem Chem Phys ; 18(10): 7300-9, 2016 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-26900007

RESUMEN

The nature of F-BrX-R interactions (with X = F, Cl, Br, I and R = -H, -F) has been investigated through theoretical calculation of molecular potential electrostatic (MEP), molecular polarizability, atoms in molecules (AIM) analysis and energetic decomposition analysis (EDA). A detailed analysis of the MEPs reveals that considering only the static electrostatic interactions is not sufficient to explain the nature of these interactions. The molecular polarizabilities of X-R molecules suggest that the deformation capacity of the electronic cloud of the lone pairs of the X atom plays an important role in the stability of these complexes. The topological analysis of the L(r) = -»∇(2)ρ(r) function and the detailed analysis of the atomic quadrupole moments reveal that the BrX interactions are electrostatic in nature. The electron acceptor Br atom causes a polarization of the electronic cloud (electronic induction) on the valence shell of the X atom. Finally, the electrostatic forces and charge transfer play an important role not only in the stabilization of the complex, but also in the determination of the molecular geometry of equilibrium. The dispersive and polarization forces do not influence the equilibrium molecular geometry.

11.
J Phys Chem A ; 119(16): 3746-52, 2015 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-25826009

RESUMEN

In this paper a theoretical study has been carried out to investigate the nature of the unusual halogen-halogen contacts in the complexes R-X···X-R (with R = -H, -Cl, -F and X = Cl, Br, I). AIM, NBO, and MEP analyses have been used to characterize X···X interactions. Formation of the unusual X···X interactions leads to a significant increase of electron charge density in the bonding region between the two halogen atoms. The geometry and stability of these complexes is mainly due to electrostatic interactions lump(X1) → hole(X2) and lump(X2) → hole(X1) [or equivalently [VS,min(X1) → VS,max(X2) and VS,min(X2) → VS,max(X1)] and the charge transfers LP(X1) → σ*(R-X2) and LP(X2) → σ*(R-X1). In other words, these findings suggest that the electrostatic interactions and the charge transfer play a substantial role in determining the optimal geometry of these complexes, as in conventional halogen bonds, even though the dispersion term is the most important attractive term for all the complexes studied here, save one.


Asunto(s)
Halógenos/química , Teoría Cuántica , Electricidad Estática
12.
Chempluschem ; : e202400436, 2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39051905

RESUMEN

Ammeline (AM) is a molecule with a very low reputation in the field of supramolecular community, but with a recently proven potential both experimentally and theoretically. In this work, dispersion-corrected density functional theory (DFT-D) computations and molecular dynamics (MD) simulations were employed to understand the aggregation mechanism of AM in chloroform and water media. Our DFT-D and MD analyzes show that the most important interactions are those formed by the amine groups (-NH2) with both the pyridine-type nitrogen atoms and the carbonyl groups (C=O). In the more polar solvent, the interactions between water molecules and the C=O group prevent the AM from forming more interactions with itself. Nevertheless, four types of dimers involving N-H∙∙∙O interactions were found to exist in water solutions. The overlooked tetrel bond between endocyclic N and C atoms can also stabilize dimers in solution. Moreover, while most AM dimers are enthalpy-driven, our results indicate that the unique DD-AA dimer (D=donor, A=acceptor) that originates cyclic rosettes is entropy-driven.

13.
Org Biomol Chem ; 11(45): 7953-65, 2013 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-24141322

RESUMEN

The Diels-Alder (DA) reactions of isoprene with vinylborane, dimethylvinylborane and dichlorovinylborane have been studied using density functional theory and the quantum theory of atoms in molecules. We evaluated the topological properties of the transition structures (TSs) and the evolution of such properties along the reaction paths. In accordance with previous studies, our results indicate that the endo TSs of the reaction with vinylborane present high [4 + 3] character, while the exo TSs and all the TSs of the reactions with dimethylvinylborane and dichlorovinylborane have [4 + 2] character. The higher charge concentration between the diene and the dienophile appears to account for the greater stabilization of the [4 + 3] TSs. The [4 + 3] structure turns into the [4 + 2] structure through a conflict mechanism in which the C1 and B atoms compete to become attached to C6. The C6-B interaction, present from early steps of the reaction until beyond the TSs, plays a key role in facilitating the formation of the new σ-bonds. The [4 + 3] and [4 + 2] mechanisms for the DA reactions of boron-substituted dienophiles may be distinguished by analyzing the profile of the ellipticity at the C1-C6 bcp along the course of the reaction.


Asunto(s)
Boranos/química , Electrones , Butadienos/química , Ciclización , Hemiterpenos/química , Estructura Molecular , Pentanos/química , Teoría Cuántica
14.
J Ethnopharmacol ; 302(Pt A): 115889, 2023 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-36334817

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Lauraceae family includes Nectandra angustifolia a species widely used in the folk medicine of South America against various maladies. It is commonly used to treat different types of processes like inflammation, pain, and snakebites. Snakes of the Bothrops genus are responsible for about 97% of the ophidic accidents in northeastern Argentina. AIM OF THE STUDY: To evaluate the anti-snake activity of the phytochemicals present in N. angustifolia extracts, identify the compounds, and evaluate their inhibitory effect on phospholipase A2 (PLA2) with in vitro and in silico assays. METHODS: Seasonal variations in the alexiteric potential of aqueous, ethanolic and hexanic extracts were evaluated by inhibition of coagulant, haemolytic, and cytotoxic effects of B. diporus venom. The chemical identity of an enriched fraction obtained by bio-guided fractioning was established by UPLC-MS/MS analysis. Molecular docking studies were carried out to investigate the binding mechanisms of the identified compounds to PLA2 enzyme from snake venom. RESULTS: All the extracts inhibited venom coagulant activity. However, spring ethanolic extract achieved 100% inhibition of haemolytic activity. Bio-guide fractioning led to an enriched fraction (F4) with the highest haemolytic inhibition. Five flavonoids were identified in this fraction; molecular docking and Molecular Dynamics (MD) simulations indicated the binding mechanisms of the identified compounds. The carbohydrates present in some of the compounds had a critical effect on the interaction with PLA2. CONCLUSION: This study shows, for the first time, which compounds are responsible for the anti-snake activity in Nectandra angustifolia based on in vitro and in silico assays. The results obtained in this work support the traditional use of this species as anti-snake in folk medicine.


Asunto(s)
Bothrops , Venenos de Crotálidos , Lauraceae , Animales , Flavonoides/farmacología , Simulación del Acoplamiento Molecular , Cromatografía Liquida , Extractos Vegetales/uso terapéutico , Espectrometría de Masas en Tándem , Bothrops/fisiología , Fosfolipasas A2/metabolismo
15.
J Chem Inf Model ; 52(1): 99-112, 2012 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-22146008

RESUMEN

We report here an exhaustive and complete conformational study on the conformational potential energy hypersurface (PEHS) of dopamine (DA) interacting with the dopamine D2 receptor (D2-DR). A reduced 3D model for the binding pocket of the human D2-DR was constructed on the basis of the theoretical model structure of bacteriorhodopsin. In our reduced model system, only 13 amino acids were included to perform the quantum mechanics calculations. To obtain the different complexes of DA/D2-DR, we combined semiempirical (PM6), DFT (B3LYP/6-31G(d)), and QTAIM calculations. The molecular flexibility of DA interacting with the D2-DR was evaluated from potential energy surfaces and potential energy curves. A comparative study between the molecular flexibility of DA in the gas phase and at D2-DR was carried out. In addition, several molecular dynamics simulations were carried out to evaluate the molecular flexibility of the different complexes obtained. Our results allow us to postulate the complexes of type A as the "biologically relevant conformations" of DA. In addition, the theoretical calculations reported here suggested that a mechanistic stepwise process takes place for DA in which the protonated nitrogen group (in any conformation) acts as the anchoring portion, and this process is followed by a rapid rearrangement of the conformation allowing the interaction of the catecholic OH groups.


Asunto(s)
Dopamina/química , Simulación de Dinámica Molecular , Receptores de Dopamina D2/química , Bacteriorodopsinas/química , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Conformación Molecular , Teoría Cuántica , Termodinámica
16.
J Phys Chem A ; 116(16): 4199-210, 2012 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-22429188

RESUMEN

The role of cycloether-water (c-w) and water-water (w-w) hydrogen bonds (H-bonds) on the stability of the tetrahydrofuran THF/(H(2)O)(n) and the tetrahydropyran THP/(H(2)O)(n) complexes with n = 1-4 was investigated herein using the density functional and ab initio methods and the atoms in molecules theory. Geometry optimizations for these complexes were carried out with various possible initial guess structures. It was revealed that the major contributions of the mono and dihydrated complexes came from c-w H-bonds. A competition between c-w and w-w H-bonds contribution was observed for trihydrated complexes. For most of tetrahydrated complexes, the inter-water H-bonds provided the greatest contribution, whereas the c-w contributions were small but not negligible. It was confirmed that to produce a hydrophobic hydration of cycloethers, the C-H···O(w) H-bond should be associated with a network of H-bonds that connects both portions of the solute, through the formation of a bifunctional H-bond. A linear correlation is obtained for the sum of electron density at the bond critical points (ρ(b)) with the interaction energy (ΔE) and with the solute-solvent interaction energy (ΔE(s-w)) of the microhydrated complexes. In addition, a new way to estimate the energetic contribution as well as the preferential formation of the different H-bonds based completely on ρ(b) was found. Even more, it allows to differentiate the contribution from c-w interactions in both hydrophilic and hydrophobic contributions, it is therefore a useful tool for studying the hydration of large biomolecules. The analysis of the modifications in the atomic and group properties brought about by successive addition of H(2)O molecules allowed to pinpoint the atoms or molecular groups that undergo the greatest changes in electron population and energetic stabilization. It was identified that the remarkable stabilization of the water oxygen atoms is crucial for the stabilization of the complexes.


Asunto(s)
Furanos/química , Piranos/química , Enlace de Hidrógeno , Teoría Cuántica , Agua/química
17.
J Phys Chem A ; 115(18): 4701-10, 2011 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-21506592

RESUMEN

In this work, mono- and di-hydrated complexes of the formamide were studied. The calculations were performed at the MP2/6-311++G(d,p) level of approximation. The atoms in molecules theory (AIM), based on the topological properties of the electronic density distribution, was used to characterize the different types of bonds. The analysis of the hydrogen bonds (H-bonds) in the most stable mono- and di-hydrated formamide complexes shows a mutual reinforcement of the interactions, and some of these complexes can be considered as "bifunctional hydrogen bonding hydration complexes". In addition, we analyzed how the strength and the nature of the interactions, in mono-hydrated complexes, are modified by the presence of a second water molecule in di-hydrated formamide complexes. Structural changes, cooperativity, and electron density redistributions demonstrate that the H-bonds are stronger in the di-hydrated complexes than in the corresponding mono-hydrated complexes, wherein the σ- and π-electron delocalization were found. To explain the nature of such interactions, we carried out the atoms in molecules theory in conjunction with reduced variational space self-consistent field (RVS) decomposition analysis. On the basis of the local Virial theorem, the characteristics of the local electron energy density components at the bond critical points (BCPs) (the 1/4∇ (2)ρ(b) component of electron energy density and the kinetic energy density) were analyzed. These parameters were used in conjunction with the electron density and the Laplacian of the electron density to analyze the characteristics of the interactions. The analysis of the interaction energy components for the systems considered indicates that the strengthening of the hydrogen bonds is manifested by an increased contribution of the electrostatic energy component represented by the kinetic energy density at the BCP.


Asunto(s)
Formamidas/química , Enlace de Hidrógeno , Estructura Molecular , Teoría Cuántica , Agua/química
18.
J Phys Chem A ; 114(8): 2855-63, 2010 Mar 04.
Artículo en Inglés | MEDLINE | ID: mdl-20136161

RESUMEN

In this work, the cooperative effects implicated in bifunctional hydrogen bonds (H-bonds) were studied (in monohydrated six-membered cycloether) within the framework of the atoms in molecules (AIM) theory and of the natural bond orbitals (NBO) analysis. The study was carried out in complexes formed by six-membered cycloether compounds (tetrahydropyrane, 1,4-dioxane, and 1,3-dioxane) and a water molecule. These compounds were used as model systems instead of more complicated molecules of biological importance. All the results were obtained at the second-order Møller-Plesset (MP2) level theory using a 6-311++G(d,p) basis set. Attention was focused on the indicators of the cooperative effects that arise when a water molecule interacts simultaneously with a polar and a nonpolar portion of a six-membered cycloether (via bifunctional hydrogen bonds) and compared with conventional H-bonds where the water molecule only interacts with the polar portion of the cycloether. Different indicators of H-bonds strength, such as structural and spectroscopic data, electron charge density, population analysis, hyperconjugation energy and charge transference, consistently showed significant cooperative effects in bifunctional H-bonds. From the AIM, as well as from the NBO analysis, the obtained results allowed us to state that in the monohydrated six-membered cycloether, where the water molecule plays a dual role, as proton acceptor and proton donor, a mutual reinforcement of the two interactions occurs. Because of this feature, the complexes engaged by bifunctional hydrogen bonds are more stabilized than the complexes linked by conventional hydrogen bonds.

19.
J Phys Chem A ; 114(1): 552-62, 2010 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-19919022

RESUMEN

Density functional theory (DFT) and atoms in molecules theory (AIM) were used to study the characteristic of the noncovalent interactions in complexes formed between Lewis bases (NH(3), H(2)O, and H(2)S) and Lewis acids (ClF, BrF, IF, BrCl, ICl, and IBr). In order to compare halogen and hydrogen bonds interactions, this study included hydrogen complexes formed by some Lewis bases and HF, HCl, and HBr Lewis acids. Ab initio, wave functions were generated at B3LYP/6-311++G(d,p) level with optimized structures at the same level. Criteria based on a topological analysis of the electron density were used in order to characterize the nature of halogen interactions in Lewis complexes. The main purpose of the present work is to provide an answer to the following questions: (a) why can electronegative atoms such as halogens act as bridges between two other electronegative atoms? Can a study based on the electron charge density answer this question? Considering this, we had performed a profound study of halogen complexes in the framework of the AIM theory. A good correlation between the density at the intermolecular bond critical point and the energy interaction was found. We had also explored the concentration and depletion of the charge density, displayed by the Laplacian topology, in the interaction zone and in the X-Y halogen donor bond. From the atomic properties, it was generally observed that the two halogen atoms gain electron population in response to its own intrinsic nature. Because of this fact, both atoms are energetically stabilized.

20.
J Phys Chem A ; 113(49): 13797-807, 2009 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-19888712

RESUMEN

In the present work, experiments on electron density changes in the adsorption process of alkenes on acidic zeolites, in the framework of atoms in molecules theory (AIM), were carried out. Electron densities were obtained at MP2 and B3LYP levels using a 6-31++G(d,p) basis set. This study explores the energetic and the electron density redistributions associated with O-H...pi interactions. The main purpose of this work is to provide an answer to the following questions: (a) Which and how large are the changes induced on the molecular electron distribution by the formation of adsorbed alkenes? (b) Can a reasonable estimate of the adsorption energy of alkenes on the active site of zeolite be solely calculated from an analysis of the electron densities? We have used topological parameters to determine the strength and nature of the interactions in the active site of the zeolite. All the results derived from the electron density analysis show that the stabilization of the adsorbed alkenes follows the order isobutene > trans-2-butene congruent with 1-butene congruent with propene > ethene, reflecting the order of basicity of C=C bonds, i.e., (C(ter)=C(prim)) > (C(sec)=C(sec)) congruent with (C(prim)=C(sec)) > (C(prim)=C(prim)). In addition, we have found a useful set of topological parameters that are good for estimating the adsorption energy in adsorbed alkenes.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda