Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Soft Matter ; 18(26): 4944-4952, 2022 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-35730763

RESUMEN

The collapse of a catenoidal soap film when the rings supporting it are moved beyond a critical separation is a classic problem in interface motion in which there is a balance between surface tension and the inertia of the surrounding air, with film viscosity playing only a minor role. Recently [Goldstein et al., Phys. Rev. E, 2021, 104, 035105], we introduced a variant of this problem in which the catenoid is bisected by a glass plate located in a plane of symmetry perpendicular to the rings, producing two identical hemicatenoids, each with a surface Plateau border (SPB) on the glass plate. Beyond the critical ring separation, the hemicatenoids collapse in a manner qualitatively similar to the bulk problem, but their motion is governed by the frictional forces arising from viscous dissipation in the SPBs. We present numerical studies of a model that includes classical laws in which the frictional force fv for SPB motion on wet surfaces is of the form fv ∼ Can, where Ca is the capillary number. Our experimental data on the temporal evolution of this process confirms the expected value n = 2/3 for mobile surfactants and stress-free interfaces. This study can help explain the fragmentation of bubbles inside very confined geometries such as porous materials or microfluidic devices.

2.
Proc Natl Acad Sci U S A ; 111(23): 8339-44, 2014 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-24843162

RESUMEN

Recent work has shown that a Möbius strip soap film rendered unstable by deforming its frame changes topology to that of a disk through a "neck-pinching" boundary singularity. This behavior is unlike that of the catenoid, which transitions to two disks through a bulk singularity. It is not yet understood whether the type of singularity is generally a consequence of the surface topology, nor how this dependence could arise from an equation of motion for the surface. To address these questions we investigate experimentally, computationally, and theoretically the route to singularities of soap films with different topologies, including a family of punctured Klein bottles. We show that the location of singularities (bulk or boundary) may depend on the path of the boundary deformation. In the unstable regime the driving force for soap-film motion is the mean curvature. Thus, the narrowest part of the neck, associated with the shortest nontrivial closed geodesic of the surface, has the highest curvature and is the fastest moving. Just before onset of the instability there exists on the stable surface the shortest closed geodesic, which is the initial condition for evolution of the neck's geodesics, all of which have the same topological relationship to the frame. We make the plausible conjectures that if the initial geodesic is linked to the boundary, then the singularity will occur at the boundary, whereas if the two are unlinked initially, then the singularity will occur in the bulk. Numerical study of mean curvature flows and experiments support these conjectures.


Asunto(s)
Algoritmos , Membranas Artificiales , Modelos Químicos , Modelos Moleculares , Jabones/química , Simulación por Computador , Movimiento (Física) , Propiedades de Superficie
3.
Phys Rev Lett ; 117(1): 017801, 2016 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-27419593

RESUMEN

We show that highly twisted minimal strips can undergo a nonsingular transition, unlike the singular transitions seen in the Möbius strip and the catenoid. If the strip is nonorientable, this transition is topologically frustrated, and the resulting surface contains a helicoidal defect. Through a controlled analytic approximation, the system can be mapped onto a scalar ϕ^{4} theory on a nonorientable line bundle over the circle, where the defect becomes a topologically protected kink soliton or domain wall, thus establishing their existence in minimal surfaces. Demonstrations with soap films confirm these results and show how the position of the defect can be controlled through boundary deformation.

4.
Phys Rev Lett ; 114(12): 127801, 2015 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-25860771

RESUMEN

We describe the first analytically tractable example of an instability of a nonorientable minimal surface under parametric variation of its boundary. A one-parameter family of incomplete Meeks Möbius surfaces is defined and shown to exhibit an instability threshold as the bounding curve is opened up from a double-covering of the circle. Numerical and analytical methods are used to determine the instability threshold by solution of the Jacobi equation on the double covering of the surface. The unstable eigenmode shows excellent qualitative agreement with that found experimentally for a closely related surface. A connection is proposed between systolic geometry and the instability by showing that the shortest noncontractable closed geodesic on the surface (the systolic curve) passes near the maximum of the unstable eigenmode.

5.
Phys Rev E ; 109(2): L022401, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38491648

RESUMEN

Periodical cicadas exhibit life cycles with durations of 13 or 17 years, and it is now accepted that large prime cycles arose to avoid synchrony with predators. Less well explored is how, in the face of intrinsic biological and environmental noise, insects within a brood emerge together in large successive swarms from underground during springtime warming. Here, we consider the decision-making process of underground cicadas experiencing random, spatially correlated thermal microclimates such as those in nature. Introducing short-range communication between insects leads to an Ising model of consensus building with a quenched, spatially correlated random magnetic field and annealed site dilution, which displays the kinds of collective swarms seen in nature. These results highlight the need for fieldwork to quantify the spatial fluctuations in thermal microclimates and their relationship to the spatiotemporal dynamics of swarm emergence.


Asunto(s)
Hemípteros , Animales , Consenso
6.
Phys Rev Lett ; 111(15): 158101, 2013 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-24160630

RESUMEN

Groups of beating flagella or cilia often synchronize so that neighboring filaments have identical frequencies and phases. A prime example is provided by the unicellular biflagellate Chlamydomonas reinhardtii, which typically displays synchronous in-phase beating in a low-Reynolds number version of breaststroke swimming. We report the discovery that ptx1, a flagellar-dominance mutant of C. reinhardtii, can exhibit synchronization in precise antiphase, as in the freestyle swimming stroke. High-speed imaging shows that ptx1 flagella switch stochastically between in-phase and antiphase states, and that the latter has a distinct waveform and significantly higher frequency, both of which are strikingly similar to those found during phase slips that stochastically interrupt in-phase beating of the wild-type. Possible mechanisms underlying these observations are discussed.


Asunto(s)
Chlamydomonas reinhardtii/fisiología , Flagelos/fisiología , Modelos Biológicos , Chlamydomonas reinhardtii/genética , Flagelos/genética , Oscilometría , Procesos Estocásticos
7.
Phys Rev E ; 107(1-1): 014404, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36797913

RESUMEN

A fundamental issue in biology is the nature of evolutionary transitions from unicellular to multicellular organisms. Volvocine algae are models for this transition, as they span from the unicellular biflagellate Chlamydomonas to multicellular species of Volvox with up to 50,000 Chlamydomonas-like cells on the surface of a spherical extracellular matrix. The mechanism of phototaxis in these species is of particular interest since they lack a nervous system and intercellular connections; steering is a consequence of the response of individual cells to light. Studies of Volvox and Gonium, a 16-cell organism with a plate-like structure, have shown that the flagellar response to changing illumination of the cellular photosensor is adaptive, with a recovery time tuned to the rotation period of the colony around its primary axis. Here, combining high-resolution studies of the flagellar photoresponse of micropipette-held Chlamydomonas with 3D tracking of freely swimming cells, we show that such tuning also underlies its phototaxis. A mathematical model is developed based on the rotations around an axis perpendicular to the flagellar beat plane that occur through the adaptive response to oscillating light levels as the organism spins. Exploiting a separation of timescales between the flagellar photoresponse and phototurning, we develop an equation of motion that accurately describes the observed photoalignment. In showing that the adaptive timescales in Volvocine algae are tuned to the organisms' rotational periods across three orders of magnitude in cell number, our results suggest a unified picture of phototaxis in green algae in which the asymmetry in torques that produce phototurns arise from the individual flagella of Chlamydomonas, the flagellated edges of Gonium, and the flagellated hemispheres of Volvox.


Asunto(s)
Chlamydomonas , Chlorophyta , Volvox , Filogenia , Fototaxis , Evolución Biológica
8.
Phys Rev E ; 104(3-2): 035105, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34654160

RESUMEN

Experimental and theoretical work reported here on the collapse of catenoidal soap films of various viscosities reveal the existence of a robust geometric feature that appears not to have been analyzed previously; prior to the ultimate pinchoff event on the central axis, which is associated with the formation of a well-studied local double-cone structure folded back on itself, the film transiently consists of two acute-angle cones connected to the supporting rings, joined by a central quasicylindrical region. As the cylindrical region becomes unstable and pinches, the opening angle of those cones is found to be universal, independent of film viscosity. Moreover, that same opening angle at pinching is found when the transition occurs in a hemicatenoid bounded by a surface. The approach to the conical structure is found to obey classical Keller-Miksis scaling of the minimum radius as a function of time, down to very small but finite radii. While there is a large body of work on the detailed structure of the singularities associated with ultimate pinchoff events, these large-scale features have not been addressed. Here we study these geometrical aspects of film collapse by several distinct approaches, including a systematic analysis of the linear and weakly nonlinear dynamics in the neighborhood of the saddle node bifurcation leading to collapse, both within mean curvature flow and the physically realistic Euler flow associated with the incompressible dynamics of the surrounding air. These analyses are used to show how much of the geometry of collapsing catenoids is accurately captured by a few active modes triggered by boundary deformation. A separate analysis based on a mathematical sequence of shapes progressing from the critical catenoid towards the Goldschmidt solution is shown to predict accurately the cone angle at pinching. We suggest that the approach to the conical structures can be viewed as passage close to an unstable fixed point of conical similarity solutions. The overall analysis provides the basis for the systematic study of more complex problems of surface instabilities triggered by deformations of the supporting boundaries.

9.
ACS Appl Mater Interfaces ; 12(6): 7736-7743, 2020 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-31945290

RESUMEN

The growing concerns over desertification have spurred research into technologies aimed at acquiring water from nontraditional sources such as dew, fog, and water vapor. Some of the most promising developments have focused on improving designs to collect water from fog. However, the absence of a shared framework to predict, measure, and compare the water collection efficiencies of new prototypes is becoming a major obstacle to progress in the field. We address this problem by providing a general theory to design efficient fog collectors as well as a concrete experimental protocol to furnish our theory with all the necessary parameters to quantify the effective water collection efficiency. We show in particular that multilayer collectors are required for high fog collection efficiency and that all efficient designs are found within a narrow range of mesh porosity. We support our conclusions with measurements on simple multilayer harp collectors.

10.
Phys Rev Lett ; 103(19): 198103, 2009 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-20365957

RESUMEN

In contexts such as suspension feeding in marine ecologies there is an interplay between brownian motion of nonmotile particles and their advection by flows from swimming microorganisms. As a laboratory realization, we study passive tracers in suspensions of eukaryotic swimmers, the alga Chlamydomonas reinhardtii. While the cells behave ballistically over short intervals, the tracers behave diffusively, with a time-dependent but self-similar probability distribution function of displacements consisting of a gaussian core and robust exponential tails. We emphasize the role of flagellar beating in creating oscillatory flows that exceed brownian motion far from each swimmer.


Asunto(s)
Chlamydomonas reinhardtii/fisiología , Movimiento/fisiología , Chlamydomonas reinhardtii/citología , Difusión , Probabilidad , Suspensiones , Natación
11.
Phys Rev Fluids ; 12016 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-29750206

RESUMEN

It is now well established that nearby beating pairs of eukaryotic flagella or cilia typically synchronize in phase. A substantial body of evidence supports the hypothesis that hydrodynamic coupling between the active filaments, combined with waveform compliance, provides a robust mechanism for synchrony. This elastohydrodynamic mechanism has been incorporated into 'bead-spring' models in which the beating flagella are represented by microspheres tethered by radial springs as they are driven about orbits by internal forces. While these low-dimensional models reproduce the phenomenon of synchrony, their parameters are not readily relatable to those of the filaments they represent. More realistic models which reflect the underlying elasticity of the axonemes and the active force generation, take the form of fourth-order nonlinear PDEs. While computational studies have shown the occurrence of synchrony, the effects of hydrodynamic coupling between nearby filaments governed by such continuum models have been theoretically examined only in the regime of interflagellar distances d large compared to flagellar length L. Yet, in many biological situations d/L ≪ 1. Here, we first present an asymptotic analysis of the hydrodynamic coupling between two extended filaments in the regime d/L ≪ 1, and find that the form of the coupling is independent of the microscopic details of the internal forces that govern the motion of the individual filaments. The analysis is analogous to that yielding the localized induction approximation for vortex filament motion, extended to the case of mutual induction. In order to understand how the elastohydrodynamic coupling mechanism leads to synchrony of extended objects, we introduce a heuristic model of flagellar beating. The model takes the form of a single fourth-order nonlinear PDE whose form is derived from symmetry considerations, the physics of elasticity, and the overdamped nature of the dynamics. Analytical and numerical studies of this model illustrate how synchrony between a pair of filaments is achieved through the asymptotic coupling.

12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(5 Pt 2): 056305, 2003 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-14682882

RESUMEN

We study a fluid jet descending through stratified surroundings at low Reynolds number in Hele-Shaw flow. The jet buckles and overturns inside a conduit of entrained fluid which supports smooth or unstable traveling waves. A model of the recirculating flow within the conduit shows that buckling and waves arise from Kelvin-Helmholtz instabilities and quantitatively accounts for the main experimental observations. Beyond the onset of the instability, a damped, forced Burgers' equation obtained from corrections to Darcy's law for small Reynolds number governs the interface dynamics and supports singularities corresponding to the observed jet overturning and unstable waves.

13.
Phys Rev Lett ; 95(18): 184501, 2005 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-16383906

RESUMEN

From algal suspensions to magma upwellings, one finds jets which exhibit complex symmetry-breaking instabilities as they are decelerated by their surroundings. We consider here a model system--a saline jet descending through a salinity gradient--which produces dynamics unlike those of standard momentum jets or plumes. The jet coils like a corkscrew within a conduit of viscously entrained fluid, whose upward recirculation braids the jet, and nearly confines transverse mixing to the narrow conduit. We show that the underlying jet structure and certain scaling relations follow from similarity solutions to the fluid equations and the physics of Kelvin-Helmholtz instabilities.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda