Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Emerg Infect Dis ; 29(5): 1073-1075, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37081606

RESUMEN

Melioidosis, caused by the soil-dwelling bacterium Burkholderia pseudomallei, is predicted to be endemic in Nigeria but is only occasionally reported. This report documents the systematic identification of the presence of B. pseudomallei and B. thailandensis in the soil across multiple states in Nigeria.


Asunto(s)
Burkholderia pseudomallei , Melioidosis , Humanos , Burkholderia pseudomallei/genética , Melioidosis/epidemiología , Melioidosis/microbiología , Nigeria/epidemiología , Microbiología del Suelo
2.
Ther Adv Infect Dis ; 11: 20499361241265953, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39070703

RESUMEN

Background: Fungal contamination of hospital water distribution systems has been implicated in outbreaks of healthcare-associated infections. Objectives: To evaluate the prevalence of fungi in the water distribution system of a tertiary hospital in Nigeria. Design: This was a descriptive cross-sectional study. Methods: Swabs and water samples were collected from taps and faucets in the hospital categorized into low (Accidents and Emergency Unit, Children Emergency Unit, Acute Stroke Unit and the 24 in-patient hospital wards) and high-risk (Renal Dialysis Unit, Central Sterile Services Department, Theatres and Intensive Care Units (ICUs)) units based on the vulnerability of patients being managed there. The membrane filtration method for water analysis was used. Where possible, isolates cultured were identified to species level. In total, 105 water and 49 swab samples were collected for analysis. Results: All analysed water samples grew fungi. A total of 289 (high-risk; n = 178; low-risk; n = 111) and 76 fungi isolates were recorded from water and swab samples, respectively, with 31 different species identified. Aspergillus was the most predominant genus with five different species: Aspergillus niger (9.9%), terreus (4.4%), flavus (3.3%), fumigatus (8.8%) and versicolor (2.20%) isolated. Twenty-five and 18 species of fungi were identified in the low and high-risk units, respectively. The labour ward (n = 46; 25.8%) and modular theatre (n = 47; 42.3%) were the most contaminated units. Cladosporium spp. and Paecilomyces spp. were the most frequently isolated fungi in the low and high-risk units, respectively. The dialysis centre (n = 9; 8.1%) and renal transplant theatre (n = 7; 6.31%) had the lowest contamination rates in the high-risk units. Aspergillus niger, Cephalosporium curtipes, Penicillium chrysogenum and Penicillium glabrum were each identified in 4/6 units from which swabs were taken. The facility had no documented protocol for its water safety and quality. Conclusion: Our data reveal a high rate of contamination of hospital water sources by fungi, some of which are known to cause life-threatening infections. For better water treatment and water tank cleaning and disinfection, a standard protocol is advised. Ensuring that the water distribution systems in hospital settings are free of fungal contaminants is important to prevent the possibility of waterborne mycosis outbreaks.

3.
Access Microbiol ; 5(10)2023.
Artículo en Inglés | MEDLINE | ID: mdl-37970086

RESUMEN

The genus Burkholderia comprises Gram-negative bacteria that are metabolically complex and versatile, often thriving in hostile settings. Burkholderia pseudomallei , the causative agent of melioidosis, is a prominent member of the genus and a clinical pathogen in tropical and sub-tropical regions. This pathogen is well known for its multidrug resistance and possible bioweapon potential. There is currently no report of the pathogen from clinical specimens in Nigeria, which might be due to misdiagnosis with phenotypic assays. This study aims to explore the accuracy of the use of phenotypic assays to diagnose B. pseudomallei in Nigeria. Two hundred and seventeen clinical samples and 28 Gram-negative clinical isolates were collected and analysed using Ashdown's selective agar and monoclonal antibody-based latex agglutination. Species-level identification was achieved using the analytical profile index (API) 20NE system. The susceptibility of the isolates to nine different antimicrobial agents was determined using the disc diffusion method. A total of seventy-four culture-positive isolates were obtained using Ashdown's selective agar. Twenty-two of these isolates were believed to be B. pseudomallei through the monoclonal antibody-based latex agglutination test and the API 20NE system subsequently identified 14 isolates as Burkholderia . The predominant Burkholderia species was B. cepacia with an isolation rate of 30.8 % (8/26). No isolate was distinctively identified as B. pseudomallei but five isolates were strongly suspected to be B. pseudomallei with similarity indices ranging from 81.9-91.3 %. Other bacterial species with definitive identity include Aeromonas sp., Sphingomonas sp. and Pseudomonas aeruginosa . The antibiotic susceptibility results revealed an overall resistance to amoxicillin-clavullanic acid of 71.4 %, to cefepime of 33.3 %, to trimethoprim-sulfamethoxazole of 38.1 %, to piperacillin-tazobactam of 33.3 %, to imipenem of 66.7 %, to doxycycline of 57.1% and to ceftazidime of 66.7 %. The highest intermediate resistance was observed for cefepime and piperacillin-tazobactam with a value of 66.7 % each, while there was no intermediate resistance for gentamicin, colistin and imipenem. Our findings, therefore, show that phenotypic assays alone are not sufficient in the diagnosis of melioidosis. Additionally, they provide robust support for present and future decisions to expand diagnostic capability for melioidosis beyond phenotypic assays in low-resource settings.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda