Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Inorg Chem ; 62(21): 8435-8441, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37171409

RESUMEN

Gadolinium is a special case in spectroscopy because of the near isotropic nature of the 4f7 configuration of the +3 oxidation state. Gd3+ complexes have been studied in several symmetries to understand the underlying mechanisms of the ground state splitting. The abundance of information in Gd3+ spectra can be used as a probe for properties of the other rare earth ions in the same complexes. In this work, the zero-field splitting (ZFS) of a series of Gd3+ pentagonal bipyramidal complexes of the form [GdX1X2(Leq)5]n+ [n = 1, X = axial ligands: Cl-, -OtBu, -OArF5 or n = 3, X = tBuPO(NHiPr)2, Leq = equatorial ligand: Py, THF or H2O] with near fivefold symmetry axes along X1-Gd-X2 was investigated. The ZFS parameters were determined by fitting of room-temperature continuous wave electron paramagnetic resonance (EPR) spectra (at X-, K-, and Q-band) to a spin Hamiltonian incorporating extended Stevens operators compatible with C5 symmetry. Examination of the acquired parameters led to the conclusion that the ZFS is dominated by the B20 term and that the magnitude of B20 is almost entirely dependent on, and inversely proportional to, the donor strength of the axial ligands. Surveying the continuous shape measure and the X1-Gd-X2 angle of the complexes showed that there is some correlation between the proximity of each complex to D5h symmetry and the magnitude of the B65 parameter, but that the deformation of the X1-Gd-X2 angle is more significant than other distortions. Finally, the magnitude of B20 was found to be inversely proportional to the thermal barrier for the reversal of the magnetic moment (Ueff) of the corresponding isostructural Dy3+ complexes.

2.
Inorg Chem ; 59(11): 7371-7375, 2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32392411

RESUMEN

Here we report stable p-quinone-radical-bridged rare-earth complexes involving the ligand tetramethylquinone (QMe4•-). The complexes, {Y[(QMe4)•-Cl2(THF)3]}2 (1) and {Gd[(QMe4)•-Cl2(THF)3]}2 (2), where THF = tetrahydrofuran, are sufficiently stable that we can measure the single-crystal structures and perform magnetic and electron paramagnetic resonance measurements. These studies show the presence of a semiquinone form and that the magnetic interaction between the radicals in the dimer is strong and antiferromagnetic.

3.
Inorg Chem ; 59(1): 235-243, 2020 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-31825607

RESUMEN

In this paper, we experimentally study and model the electron donating character of an axial diamagnetic Pd2+ ion in four metalloligated lanthanide complexes of formula [PPh4][Ln{Pd(SAc)4}2] (SAc- = thioacetate, Ln = Tb, Dy, Ho, and Er). A global model encompassing inelastic neutron scattering, torque magnetometry, and dc magnetometry allows to precisely determine the energy level structure of the complexes. Solid state nuclear magnetic resonance reveals a less donating character of Pd2+ compared to the previously reported isostructural Pt2+-based complexes. Consequently, all complexes invariably show a lower crystal field strength compared to their Pt2+-analogues. The dynamic properties show an enhanced single molecule magnet behavior due to the suppression of quantum tunneling, in agreement with our model.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda