Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Anal Chem ; 91(10): 6689-6694, 2019 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-31034207

RESUMEN

The continuous separation mechanism of micro free-flow electrophoresis (µFFE) is a straightforward, suitable tool for microscale purification of reaction mixtures. However, aqueous separation buffers and organic reaction solvents limit the applicability of this promising combination. Herein, we have explored nonaqueous micro free-flow electrophoresis for this purpose and present its suitability for a continuous workup of organic reactions performed in acetonitrile. After successful nonaqueous FFE separation of organic dyes, the approach was applied to continuously recover the photocatalyst [Ru(bpy)3]2+ from a homogeneous, acetonitrile-based reaction mixture. This approach opens up possibilities for further downstream processing of purified products and is also attractive for recycling of precious catalyst species.

2.
Anal Bioanal Chem ; 410(3): 853-862, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-29085988

RESUMEN

Microreactors have gained increasing attention in their application toward continuous micro flow synthesis. An unsolved problem of continuous flow synthesis is the lack of techniques for continuous product purification. Herein, we present a micro free-flow electrophoresis device and accompanying setup that enables the continuous separation and purification of unlabeled organic synthesis products. The system is applied to the separation and purification of triarylmethanes. For imaging of the unlabeled analytes on-chip a novel setup for large area (3.6 cm2) deep ultra violet excitation fluorescence detection was developed. Suitable separation conditions based on low conductivity electrophoresis buffers were devised to purify the product. With the optimized conditions, starting materials and product of the synthesis were well separated (R > 1.2). The separation was found to be very stable with relative standard deviations of the peak positions smaller than 3.5% over 15 min. The stable conditions enabled collection of the separated compounds, and purity of the product fraction was confirmed using capillary electrophoresis and mass spectrometry. This result demonstrates the great potential of free-flow electrophoresis as a technique for product purification or continuous clean-up in flow synthesis. Graphical Abstract Micro free-flow electrophoresis (µFFE) allows continuous separation and purification of small organic synthesis products. Enabled by a novel deep-UV imaging setup starting materials and product of a recently developed synthesis for triarylmethanes could be purified. Thereby demonstrating the potential of µFFE as continuous purification technique for micro flow synthesis.

3.
Anal Chem ; 89(17): 9400-9406, 2017 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-28753273

RESUMEN

Optical absorbance detection based on attenuated light transmission is limited in sensitivity due to short path lengths in microfluidic and other miniaturized platforms. An alternative is detection using the photothermal effect. Herein we introduce a new kind of photothermal absorbance measurement using integrated luminescent temperature sensor spots inside microfluidic channels. The temperature sensors were photopolymerized inside the channels from NOA 81 UV-curable thiolene prepolymer doped with a tris(1,10-phenanthroline)ruthenium(II) temperature probe. The polymerized sensing structures were as small as 26 ± 3 µm in diameter and displayed a temperature resolution of better than 0.3 K between 20 and 50 °C. The absorbance from 532 nm laser excitation of the food dye Amaranth as a model analyte was quantified using these spots, and the influence of the flow rate, laser power, and concentration was investigated. Calibration yielded a linear relationship between analyte concentration and the temperature signal in the channels. The limit of detection for the azo-dye Amaranth (E123) in this setup was 13 µM. A minimal detectable absorbance of 3.2 × 10-3 AU was obtained using an optical path length of 125 µm in this initial study. A microreactor with integrated temperature sensors was then employed for an absorbance-based miniaturized nitrite analysis, yielding a detection limit of 26 µM at a total assay time of only 75 s. This technique is very promising for sensitive, and potentially spatially resolved, optical absorbance detection on the micro- and nanoscale.

4.
Anal Chem ; 89(24): 13550-13558, 2017 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-29164853

RESUMEN

For miniaturization and integration of chemical synthesis and analytics on small length scales, the development of complex lab-on-chip (LOC) systems is in the focus of many current research projects. While application specific synthesis and analytic modules and LOC devices are widely described, the combination and integration of different modules is intensively investigated. Problems for in-line processes such as solvent incompatibilities, e.g., for a multistep synthesis or the combination of an organic drug synthesis with a cell-based biological activity testing system, require a solvent exchange between serialized modules. Here, we present a continuously operating microfluidic solvent exchanger based on the principle of free-flow electrophoresis for miscible organic/aqueous fluids. We highlight a proof-of-principle and describe the working principle for the model compound fluorescein, where the organic solvent DMSO is exchanged against an aqueous buffer. The DMSO removal performance could be significantly increased to 95% by optimization of the microfluidic layout. Moreover, the optimization of the inlet flow ratio resulted in a minimized dilution factor of 5, and we were able to demonstrate that a reduction of the supporting instrumentation is possible without a significant decrease of the DMSO removal performance. Finally, the compatibility of the developed solvent exchanger for cell based downstream applications was proven. The impedimetric monitoring of HEK293A cells in a continuously operating microfluidic setup revealed no adverse effects of the residual DMSO after the solvent replacement. Our solvent exchanger device demonstrates the power of micro-free-flow electrophoresis not only as a powerful technique for separation and purification of compound mixtures but also for solvent replacement.

5.
Anal Bioanal Chem ; 408(11): 2927-35, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26590561

RESUMEN

A pH probe with a microsecond luminescence lifetime was obtained via covalent coupling of 6-carboxynaphthofluorescein (CNF) moieties to ruthenium-tris-(1,10-phenanthroline)(2+). The probe was covalently attached to amino-modified poly-(2-hydroxyethyl)methacrylate (pHEMA) and showed a pH-dependent FRET with luminescence lifetimes of 681 to 1260 ns and a working range from ca. pH 6.5 to 9.0 with a pKa of 7.79 ± 0.14. The pH sensor matrix was integrated via spin coating as ca. 1- to 2-µm-thick layer into "CytoCapture" cell culture dishes of 6 mm in diameter. These contained a microcavity array of square-shaped regions of 40 µm length and width and 15 µm depth that was homogeneously coated with the pH sensor matrix. The sensor layer showed fast response times in both directions. A microscopic setup was developed that enabled imaging of the pH inside the microchamber arrays over many hours. As a proof of principle, we monitored the pH of Escherichia coli cell cultures grown in the microchamber arrays. The integrated sensor matrix allowed pH monitoring spatially resolved in every microchamber, and the differences in cell growth between individual chambers could be resolved and quantified.


Asunto(s)
Concentración de Iones de Hidrógeno , Escherichia coli/crecimiento & desarrollo , Escherichia coli/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Luminiscencia , Sondas Moleculares , Espectrometría de Masa por Ionización de Electrospray
6.
Analyst ; 140(22): 7496-502, 2015 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-26501586

RESUMEN

We demonstrate the fabrication, characterization and application of microfluidic chips capable of continuous electrophoretic separation via free flow isoelectric focussing (FFIEF). By integration of a near-infrared (NIR) fluorescent pH sensor layer under the whole separation bed, on-line observation of the pH gradient and determination of biomolecular isoelectric points (pI) was achieved within a few seconds. Using an optical setup for imaging of the intrinsic fluorescence of biomolecules at 266 nm excitation, labelling steps could be avoided and the native biomolecules could be separated, collected and analysed for their pI. The fabricated microchip was successfully used for the monitoring of the separation and simultaneous observation of the pH gradient during the isoelectric focussing of the proteins α-lactalbumin and ß-lactoglobulin, blood plasma proteins and the antibiotics ampicillin and ofloxacin. The obtained pIs are in good agreement with literature data, demonstrating the applicability of the system. Mass spectra from the separated antibiotics taken after 15 minutes of continuous separation from different fractions at the end of the microchip validated the separation via microfluidic isoelectric focussing and indicate the possibility of further on- or off-chip processing steps.


Asunto(s)
Ampicilina/aislamiento & purificación , Antibacterianos/aislamiento & purificación , Proteínas Sanguíneas/aislamiento & purificación , Electroforesis por Microchip/instrumentación , Lactalbúmina/aislamiento & purificación , Lactoglobulinas/aislamiento & purificación , Ofloxacino/aislamiento & purificación , Animales , Diseño de Equipo , Humanos , Concentración de Iones de Hidrógeno , Focalización Isoeléctrica/instrumentación , Punto Isoeléctrico
7.
Analyst ; 137(8): 1956-62, 2012 Apr 21.
Artículo en Inglés | MEDLINE | ID: mdl-22398506

RESUMEN

Fast capillary electrophoresis (CE) hyphenated to time-of-flight mass spectrometry (TOF-MS) of four organoarsenic species (glycerol oxoarsenosugar, sulfate oxoarsenosugar, arsenobetaine, arsenocholine) are presented using short length CE capillaries under high electric field strengths of up to 1.3 kV cm(-1) with small inner diameter (ID). The separation of arsenosugars by CE is demonstrated for the first time. An aqueous formic acid solution was employed as the background electrolyte (BGE) for the separation. Various acid concentrations were evaluated for their influence on migration times, separation efficiency as well as with regard to controlling the charge of the arsenic species. A 0.1 M formic acid/ammonium formate buffer (pH 2.8) proved to be suitable for the separation of the four species. A non-aqueous BGE was tested as an alternative buffer system for fast speciation analysis. Separation of arsenobetaine and arsenocholine could even be achieved within 10 s by pressure-assisted CE. Application of the optimized method for the analysis of extracts of a seagrass and a Wakame algae sample as well as the brown algae homogenate reference material IAEA-140/TM revealed a clear signal for the glycerol arsenosugar.


Asunto(s)
Arsénico/análisis , Electroforesis Capilar/métodos , Espectrometría de Masa por Ionización de Electrospray/métodos , Arsénico/clasificación , Tampones (Química) , Presión
8.
Methods Appl Fluoresc ; 3(3): 034003, 2015 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-29148497

RESUMEN

Herein we critically review microfluidic platforms that contain integrated fluorescent or luminescent chemical sensor assemblies. These were employed in particular for miniaturized oxygen and pH sensing. Microchips with optical temperature sensing capability are also covered since these share many concepts and applications. Other analytes and derived parameters from the above analytes are found in some sensing approaches in microfluidics.After an introduction, the work is structured into three main chapters dealing with the fabrication and microintegration of these sensors, readout and detection strategies, and applications of these microsystems. The fabrication is discussed with a focus on soft lithography-based approaches in polydimethylsiloxane (PDMS) or PDMS and glass hybrid devices that form the majority of work so far. Alternative approaches, particularly using glass or quartz as the main chip material are also covered. Detection techniques employed to date are the subject of the next chapter, where simple intensity as well as lifetime- or wavelength-referenced schemes are presented and the utility of image-based sensing on the microscale is discussed.Lastly, exciting applications of these microfluidic chips are highlighted. Luminescent oxygen and pH sensing has been of particular interest in the field of microbioreactors but other areas are also of interest, particularly chemical reactors and electrophoresis. Optical temperature sensing is discussed and its use in fundamental studies as well as in enzyme reactors. Integrated microsystems with biosensing capabilities and some for monitoring of metal ions and other analytes are also presented.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda