Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nature ; 488(7411): 379-83, 2012 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-22878719

RESUMEN

Inhibitory interneurons are essential components of the neural circuits underlying various brain functions. In the neocortex, a large diversity of GABA (γ-aminobutyric acid) interneurons has been identified on the basis of their morphology, molecular markers, biophysical properties and innervation pattern. However, how the activity of each subtype of interneurons contributes to sensory processing remains unclear. Here we show that optogenetic activation of parvalbumin-positive (PV+) interneurons in the mouse primary visual cortex (V1) sharpens neuronal feature selectivity and improves perceptual discrimination. Using multichannel recording with silicon probes and channelrhodopsin-2 (ChR2)-mediated optical activation, we found that increased spiking of PV+ interneurons markedly sharpened orientation tuning and enhanced direction selectivity of nearby neurons. These effects were caused by the activation of inhibitory neurons rather than a decreased spiking of excitatory neurons, as archaerhodopsin-3 (Arch)-mediated optical silencing of calcium/calmodulin-dependent protein kinase IIα (CAMKIIα)-positive excitatory neurons caused no significant change in V1 stimulus selectivity. Moreover, the improved selectivity specifically required PV+ neuron activation, as activating somatostatin or vasointestinal peptide interneurons had no significant effect. Notably, PV+ neuron activation in awake mice caused a significant improvement in their orientation discrimination, mirroring the sharpened V1 orientation tuning. Together, these results provide the first demonstration that visual coding and perception can be improved by increased spiking of a specific subtype of cortical inhibitory interneurons.


Asunto(s)
Interneuronas/fisiología , Corteza Visual/citología , Corteza Visual/fisiología , Percepción Visual/fisiología , Animales , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/deficiencia , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Channelrhodopsins , Aprendizaje Discriminativo , Ratones , Modelos Neurológicos , Inhibición Neural/fisiología , Parvalbúminas/metabolismo , Rodopsinas Microbianas/metabolismo , Vigilia/fisiología , Ácido gamma-Aminobutírico/metabolismo
2.
eNeuro ; 3(2)2016.
Artículo en Inglés | MEDLINE | ID: mdl-27066532

RESUMEN

A single subanesthetic dose of ketamine, an NMDA receptor antagonist, leads to fast-acting antidepressant effects. In rodent models, systemic ketamine is associated with higher dendritic spine density in the prefrontal cortex, reflecting structural remodeling that may underlie the behavioral changes. However, turnover of dendritic spines is a dynamic process in vivo, and the longitudinal effects of ketamine on structural plasticity remain unclear. The purpose of the current study is to use subcellular resolution optical imaging to determine the time course of dendritic alterations in vivo following systemic ketamine administration in mice. We used two-photon microscopy to visualize repeatedly the same set of dendritic branches in the mouse medial frontal cortex (MFC) before and after a single injection of ketamine or saline. Compared to controls, ketamine-injected mice had higher dendritic spine density in MFC for up to 2 weeks. This prolonged increase in spine density was driven by an elevated spine formation rate, and not by changes in the spine elimination rate. A fraction of the new spines following ketamine injection was persistent, which is indicative of functional synapses. In a few cases, we also observed retraction of distal apical tuft branches on the day immediately after ketamine administration. These results indicate that following systemic ketamine administration, certain dendritic inputs in MFC are removed immediately, while others are added gradually. These dynamic structural modifications are consistent with a model of ketamine action in which the net effect is a rebalancing of synaptic inputs received by frontal cortical neurons.


Asunto(s)
Dendritas/efectos de los fármacos , Antagonistas de Aminoácidos Excitadores/farmacología , Lóbulo Frontal/citología , Ketamina/farmacología , Neuronas/citología , Análisis de Varianza , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Espinas Dendríticas/efectos de los fármacos , Femenino , Lóbulo Frontal/diagnóstico por imagen , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Masculino , Ratones , Ratones Transgénicos , Microscopía Fluorescente , Neuronas/efectos de los fármacos , Antígenos Thy-1/genética , Antígenos Thy-1/metabolismo , Factores de Tiempo
3.
Nat Neurosci ; 19(9): 1234-42, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27399844

RESUMEN

The ability to shift between repetitive and goal-directed actions is a hallmark of cognitive control. Previous studies have reported that adaptive shifts in behavior are accompanied by changes of neural activity in frontal cortex. However, neural and behavioral adaptations can occur at multiple time scales, and their relationship remains poorly defined. Here we developed an adaptive sensorimotor decision-making task for head-fixed mice, requiring them to shift flexibly between multiple auditory-motor mappings. Two-photon calcium imaging of secondary motor cortex (M2) revealed different ensemble activity states for each mapping. When adapting to a conditional mapping, transitions in ensemble activity were abrupt and occurred before the recovery of behavioral performance. By contrast, gradual and delayed transitions accompanied shifts toward repetitive responding. These results demonstrate distinct ensemble signatures associated with the start versus end of sensory-guided behavior and suggest that M2 leads in engaging goal-directed response strategies that require sensorimotor associations.


Asunto(s)
Conducta Animal/fisiología , Toma de Decisiones/fisiología , Corteza Motora/fisiología , Desempeño Psicomotor/fisiología , Animales , Mapeo Encefálico/métodos , Señales (Psicología) , Ratones Endogámicos C57BL , Ratones Transgénicos , Estimulación Luminosa/métodos , Tiempo de Reacción/fisiología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda