Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Environ Sci Technol ; 58(36): 15926-15937, 2024 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-39190186

RESUMEN

This study demonstrated the strengths of in vivo molecular staining coupled with automated imaging analysis in Daphnia magna. A multiwell plate protocol was developed to assess mitochondrial membrane potential using the JC-1 dye. The suitability of five common anesthetics was initially tested, and 5% ethanol performed best in terms of anesthetic effects and healthy recovery. The staining conditions were optimized to 30 min staining with 2 µM JC-1 for best J-aggregate formation. The protocol was validated with the model compound carbonyl cyanide 3-chlorophenylhydrazone (CCCP) and used to measure the effect of four environmental contaminants, 2,4-dinitrophenol, triclosan, n-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD), and ibuprofen, on mitochondrial health. Test organisms were imaged using an automated confocal microscope, and fluorescence intensities were automatically quantified. The effect concentrations for CCCP were lower by a factor of 30 compared with the traditional OECD 202 acute toxicity test. Mitochondrial effects were also detected at lower concentrations for all tested environmental contaminants compared to the OCED 202 test. For 2,4-dinitrophenol, mitochondria effects were detectable after 2 h exposure to environmentally relevant concentrations and predicted organism death was observed after 24 h. The high sensitivity and time efficiency of this novel automated imaging method make it a valuable tool for advancing ecotoxicological testing.


Asunto(s)
Daphnia , Potencial de la Membrana Mitocondrial , Animales , Daphnia/efectos de los fármacos , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Ecotoxicología , Fluorescencia , Contaminantes Químicos del Agua/toxicidad , Daphnia magna
2.
Arch Toxicol ; 98(8): 2695-2709, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38769170

RESUMEN

To improve the mechanistic screening of reproductive toxicants in  chemical-risk assessment and drug development, we have developed a three-dimensional (3D) heterogenous testicular co-culture model from neonatal mice. Di-n-butyl phthalate (DBP), an environmental contaminant that can affect reproductive health negatively, was used as a model compound to illustrate the utility of the in vitro model. The cells were treated with DBP (1 nM to 100 µM) for 7 days. Automated high-content imaging confirmed the presence of cell-specific markers of Leydig cells (CYP11A1 +), Sertoli cells (SOX9 +), and germ cells (DAZL +). Steroidogenic activity of Leydig cells was demonstrated by analyzing testosterone levels in the culture medium. DBP induced a concentration-dependent reduction in testosterone levels and decreased the number of Leydig cells compared to vehicle control. The levels of steroidogenic regulator StAR and the steroidogenic enzyme CYP11A1 were decreased already at the lowest DBP concentration (1 nM), demonstrating upstream effects in the testosterone biosynthesis pathway. Furthermore, exposure to 10 nM DBP decreased the levels of the germ cell-specific RNA binding protein DAZL, central for the spermatogenesis. The 3D model also captured the development of the Sertoli cell junction proteins, N-cadherin and Zonula occludens protein 1 (ZO-1), critical for the blood-testis barrier. However, DBP exposure did not significantly alter the cadherin and ZO-1 levels. Altogether, this 3D in vitro system models testicular cellular signaling and function, making it a powerful tool for mechanistic screening of developmental testicular toxicity. This can open a new avenue for high throughput screening of chemically-induced reproductive toxicity during sensitive developmental phases.


Asunto(s)
Técnicas de Cocultivo , Dibutil Ftalato , Células Intersticiales del Testículo , Células de Sertoli , Testículo , Testosterona , Animales , Masculino , Testículo/efectos de los fármacos , Testículo/metabolismo , Células Intersticiales del Testículo/efectos de los fármacos , Células Intersticiales del Testículo/metabolismo , Dibutil Ftalato/toxicidad , Testosterona/metabolismo , Células de Sertoli/efectos de los fármacos , Células de Sertoli/metabolismo , Ratones , Reproducción/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Contaminantes Ambientales/toxicidad , Enzima de Desdoblamiento de la Cadena Lateral del Colesterol/metabolismo , Animales Recién Nacidos
3.
Ecotoxicol Environ Saf ; 262: 115321, 2023 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-37549549

RESUMEN

Di-n-butyl phthalate (DBP) is a ubiquitous environmental contaminant linked with various adverse health effects, including immune system dysfunction. Gut microbial dysbiosis can contribute to a wide range of pathogenesis, particularly immune disease. Here, we investigated the impact of DBP on the gut microbiome and examined correlations with immune system changes after five weeks oral exposure (10 or 100 mg/kg/day) in adult male mice. The fecal microbiome composition was characterized using 16S rRNA sequencing. DBP-treated mice displayed a significantly distinct microbial community composition, indicated by Bray-Curtis distance. Numerous amplicon sequence variants (ASVs) at the genus level were altered. Compared to the vehicle control group, the 10 mg/kg/day DBP group had 63 more abundant and 65 less abundant ASVs, while 60 ASVs were increased and 76 ASVs were decreased in the 100 mg/kg/day DBP group. Both DBP treatment groups showed higher abundances of ASVs assigned to Desulfovibrio (Proteobacteria phylum) and Enterorhabdus genera, while ASVs belonging to Parabacteroides, Lachnospiraceae UCG-006 and Lachnoclostridium were less common compared to the control group. Interestingly, an ASV belonging to Rumniniclostridium 6, which was less abundant in DBP-treated mice, demonstrated a negative correlation with the increased number of non-classical monocytes observed in the blood of DBP-treated animals. In addition, an ASV from Lachnospiraceae UCG-001, which was more abundant in the DBP-treated animals, showed a positive correlation with the non-classical monocyte increase. This study shows that DBP exposure greatly modifies the gut bacterial microbiome and indicates a potential contribution of microbial dysbiosis to DBP-induced immune system impairment, illustrating the importance of investigating how interactions between exposome components can affect health.

4.
Int J Mol Sci ; 23(15)2022 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-35955852

RESUMEN

Studies indicate that phthalates are endocrine disruptors affecting reproductive health. One of the most commonly used phthalates, di-n-butyl phthalate (DBP), has been linked with adverse reproductive health outcomes in men, but the mechanisms behind these effects are still poorly understood. Here, adult male mice were orally exposed to DBP (10 or 100 mg/kg/day) for five weeks, and the testis and adrenal glands were collected one week after the last dose, to examine more persistent effects. Quantification of testosterone, androstenedione, progesterone and corticosterone concentrations by liquid chromatography-mass spectrometry showed that testicular testosterone was significantly decreased in both DBP treatment groups, whereas the other steroids were not significantly altered. Western blot analysis of testis revealed that DBP exposure increased the levels of the steroidogenic enzymes CYP11A1, HSD3ß2, and CYP17A1, the oxidative stress marker nitrotyrosine, and the luteinizing hormone receptor (LHR). The analysis further demonstrated increased levels of the germ cell marker DAZL, the Sertoli cell markers vimentin and SOX9, and the Leydig cell marker SULT1E1. Overall, the present work provides more mechanistic understanding of how adult DBP exposure can induce effects on the male reproductive system by affecting several key cells and proteins important for testosterone biosynthesis and spermatogenesis, and for the first time shows that these effects persist at least one week after the last dose. It also demonstrates impairment of testosterone biosynthesis at a lower dose than previously reported.


Asunto(s)
Dibutil Ftalato , Testículo , Animales , Dibutil Ftalato/metabolismo , Humanos , Células Intersticiales del Testículo/metabolismo , Masculino , Ratones , Espermatogénesis , Testículo/metabolismo , Testosterona/metabolismo
6.
Arch Toxicol ; 94(11): 3893-3906, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32700164

RESUMEN

Gene-environment interactions are involved in the development of breast cancer, the tumor type that accounts for the majority of the cancer-related deaths among women. Here, we demonstrate that exposure to PFOS (10 µM) and PFOA (100 µM)-two contaminants ubiquitously found in human blood-for 72 h induced breast epithelial cell (MCF-10A cell line) proliferation and alteration of regulatory cell-cycle proteins (cyclin D1, CDK6, p21, p53, p27, ERK 1/2 and p38) that persisted after a multitude of cell divisions. The contaminants also promoted cell migration and invasion by reducing the levels of E-cadherin, occludin and ß-integrin in the unexposed daughter cells. The compounds further induced an increase in global DNA methylation and differentially altered histone modifications, epigenetic mechanisms implicated in tumorigenesis. This mechanistic evidence for PFOS- and PFOA-induced malignant transformation of human breast cells supports a role of these abundant contaminants in the development and progression of breast cancer. Increased knowledge of contaminant-induced effects and their contribution to breast tumorigenesis is important for a better understanding of gene-environment interactions in the etiology of breast cancer.


Asunto(s)
Ácidos Alcanesulfónicos/toxicidad , Neoplasias de la Mama/inducido químicamente , Caprilatos/toxicidad , Carcinogénesis/inducido químicamente , Proteínas de Ciclo Celular/metabolismo , Metilación de ADN/efectos de los fármacos , Epigénesis Genética/efectos de los fármacos , Fluorocarburos/toxicidad , Neoplasias de la Mama/genética , Carcinogénesis/genética , Ciclo Celular/efectos de los fármacos , Línea Celular , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Femenino , Humanos
7.
Arch Toxicol ; 94(8): 2799-2808, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32435914

RESUMEN

Olfactory dysfunction is implicated in neurodegenerative disorders and typically manifests years before other symptoms. The cyanobacterial neurotoxin ß-N-methylamino-L-alanine (BMAA) is suggested as a risk factor for neurodegenerative disease. Detection of BMAA in air filters has increased the concern that aerosolization may lead to human BMAA exposure through the air. The aim of this study was to determine if BMAA targets the olfactory system. Autoradiographic imaging showed a distinct localization of radioactivity in the right olfactory mucosa and bulb following a unilateral intranasal instillation of 3H-BMAA (0.018 µg) in mice, demonstrating a direct transfer of BMAA via the olfactory pathways to the brain circumventing the blood-brain barrier, which was confirmed by liquid scintillation. Treatment of mouse primary olfactory bulb cells with 100 µM BMAA for 24 h caused a disruption of the neurite network, formation of dendritic varicosities and reduced cell viability. The NMDA receptor antagonist MK-801 and the metabotropic glutamate receptor antagonist MCPG protected against the BMAA-induced alterations, demonstrating the importance of glutamatergic mechanisms. The ionotropic non-NMDA receptor antagonist CNQX prevented the BMAA-induced decrease of cell viability in mixed cultures containing both neuronal and glial cells, but not in cultures with neurons only, suggesting a role of neuron-glial interactions and glial AMPA receptors in the BMAA-induced toxicity. The results show that the olfactory region may be a target for BMAA following inhalation exposure. Further studies on the relations between environmental olfactory toxicants and neurodegenerative disorders are warranted.


Asunto(s)
Aminoácidos Diaminos/toxicidad , Toxinas Bacterianas/toxicidad , Cianobacterias/metabolismo , Neuroglía/efectos de los fármacos , Neuronas/efectos de los fármacos , Bulbo Olfatorio/efectos de los fármacos , Administración Intranasal , Aminoácidos Diaminos/administración & dosificación , Aminoácidos Diaminos/metabolismo , Animales , Toxinas Bacterianas/administración & dosificación , Toxinas Bacterianas/metabolismo , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Toxinas de Cianobacterias , Ácido Glutámico/metabolismo , Masculino , Ratones Endogámicos C57BL , Neuroglía/metabolismo , Neuroglía/patología , Proyección Neuronal/efectos de los fármacos , Neuronas/metabolismo , Neuronas/patología , Bulbo Olfatorio/metabolismo , Bulbo Olfatorio/patología , Mucosa Olfatoria/metabolismo
8.
J Pineal Res ; 65(1): e12488, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29528516

RESUMEN

The environmental neurotoxin ß-N-methylamino-L-alanine (BMAA) is a glutamate receptor agonist that can induce oxidative stress and has been implicated as a possible risk factor for neurodegenerative disease. Detection of BMAA in mussels, crustaceans, and fish illustrates that the sources of human exposure to this toxin are more abundant than previously anticipated. The aim of this study was to determine uptake of BMAA in the pineal gland and subsequent effects on melatonin production in primary pinealocyte cultures and a rat model. Autoradiographic imaging of 10-day-old male rats revealed a high and selective uptake in the pineal gland at 30 minutes to 24 hours after 14 C-L-BMAA administration (0.68 mg/kg). Primary pinealocyte cultures exposed to 0.05-3 mmol/L BMAA showed a 57%-93% decrease in melatonin synthesis in vitro. Both the metabotropic glutamate receptor 3 (mGluR3) antagonist Ly341495 and the protein kinase C (PKC) activator phorbol-12-myristate-13-acetate prevented the decrease in melatonin secretion, suggesting that BMAA inhibits melatonin synthesis by mGluR3 activation and PKC inhibition. Serum analysis revealed a 45% decrease in melatonin concentration in neonatal rats assessed 2 weeks after BMAA administration (460 mg/kg) and confirmed an inhibition of melatonin synthesis in vivo. Given that melatonin is a most important neuroprotective molecule in the brain, the etiology of BMAA-induced neurodegeneration may include mechanisms beyond direct excitotoxicity and oxidative stress.


Asunto(s)
Aminoácidos Diaminos/farmacología , Melatonina/metabolismo , Aminoácidos/farmacología , Animales , Toxinas de Cianobacterias , Femenino , Masculino , Estrés Oxidativo/efectos de los fármacos , Ésteres del Forbol/farmacología , Glándula Pineal/citología , Glándula Pineal/metabolismo , Proteína Quinasa C/metabolismo , Ratas , Ratas Wistar , Receptores de Glutamato Metabotrópico/antagonistas & inhibidores , Receptores de Glutamato Metabotrópico/metabolismo , Xantenos/farmacología
9.
Arch Toxicol ; 92(2): 705-716, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-29063134

RESUMEN

Perfluorooctanesulfonic acid (PFOS) is a synthetic fluorosurfactant widely used in the industry and a prominent environmental toxicant. PFOS is persistent, bioaccumulative, and toxic to mammalian species. Growing evidence suggests that PFOS has the potential to interfere with estrogen homeostasis, posing a risk of endocrine-disrupting effects. Recently, concerns about a potential link between PFOS and breast cancer have been raised, but the mechanisms underlying its actions as a potential carcinogen are unknown. By utilizing cell proliferation assays, flow cytometry, immunocytochemistry, and cell migration/invasion assays, we examined the potentially tumorigenic activity of PFOS (100 nM-1 mM) in MCF-10A breast cell line. The results showed that the growth of MCF-10A cells exposed to 1 and 10 µM PFOS was higher compared to that of the control. Mechanistic studies using 10 µM PFOS demonstrated that the compound promotes MCF-10A proliferation through accelerating G0/G1-to-S phase transition of the cell cycle after 24, 48, and 72 h of treatment. In addition, PFOS exposure increased CDK4 and decreased p27, p21, and p53 levels in the cells. Importantly, treatment with 10 µM PFOS for 72 h also stimulated MCF-10A cell migration and invasion, illustrating its capability to induce neoplastic transformation of human breast epithelial cells. Our experimental results suggest that exposure to low levels of PFOS might be a potential risk factor in human breast cancer initiation and development.


Asunto(s)
Ácidos Alcanesulfónicos/toxicidad , Mama/citología , Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Epiteliales/efectos de los fármacos , Fluorocarburos/toxicidad , Neoplasias de la Mama/patología , Línea Celular , Supervivencia Celular , Transformación Celular Neoplásica , Quinasa 4 Dependiente de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p27 de las Quinasas Dependientes de la Ciclina/metabolismo , Células Epiteliales/citología , Receptor alfa de Estrógeno/metabolismo , Femenino , Humanos , Proteína p53 Supresora de Tumor/metabolismo
10.
Arch Toxicol ; 92(5): 1729-1739, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29502166

RESUMEN

Despite significant advances in early detection and treatment, breast cancer remains a major cause of morbidity and mortality. Perfluorooctanoic acid (PFOA) is a suspected endocrine disruptor and a common environmental pollutant associated with various diseases including cancer. However, the effects of PFOA and its mechanisms of action on hormone-responsive cells remain unclear. Here, we explored the potential tumorigenic activity of PFOA (100 nM-1 mM) in human breast epithelial cells (MCF-10A). MCF-10A cells exposed to 50 and 100 µM PFOA demonstrated a higher growth rate compared to controls. The compound promoted MCF-10A proliferation by accelerating G0/G1 to S phase transition of the cell cycle. PFOA increased cyclin D1 and CDK4/6 levels, concomitant with a decrease in p27. In contrast to previous studies of perfluorooctane sulfate (PFOS), the estrogen receptor antagonist ICI 182,780 had no effect on PFOA-induced cell proliferation, whereas the PPARα antagonist GW 6471 was able to prevent the MCF-10A proliferation, indicating that the underlying mechanisms involve PPARα-dependent pathways. Interestingly, we also showed that PFOA is able to stimulate cell migration and invasion, demonstrating its potential to induce neoplastic transformation of human breast epithelial cells. These results suggest that more attention should be paid to the roles of PFOA in the development and progression of breast cancer.


Asunto(s)
Caprilatos/toxicidad , Células Epiteliales/efectos de los fármacos , Fluorocarburos/toxicidad , Glándulas Mamarias Humanas/citología , Neoplasias de la Mama/inducido químicamente , Neoplasias de la Mama/patología , Caprilatos/administración & dosificación , Ciclo Celular/efectos de los fármacos , Ciclo Celular/fisiología , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Ciclina D1/metabolismo , Relación Dosis-Respuesta a Droga , Disruptores Endocrinos/administración & dosificación , Disruptores Endocrinos/toxicidad , Células Epiteliales/metabolismo , Células Epiteliales/patología , Femenino , Fluorocarburos/administración & dosificación , Humanos , Glándulas Mamarias Humanas/efectos de los fármacos , Oxazoles/farmacología , PPAR alfa/antagonistas & inhibidores , Receptores de Estrógenos/metabolismo , Tirosina/análogos & derivados , Tirosina/farmacología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda