Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Development ; 140(12): 2632-42, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23637333

RESUMEN

The first haematopoietic stem cells share a common origin with the dorsal aorta and derive from putative adult haemangioblasts in the dorsal lateral plate (DLP) mesoderm. Here we show that the transcription factor (TF) stem cell leukaemia (Scl/Tal1) is crucial for development of these adult haemangioblasts in Xenopus and establish the regulatory cascade controlling its expression. We show that VEGFA produced in the somites is required to initiate adult haemangioblast programming in the adjacent DLP by establishing endogenous VEGFA signalling. This response depends on expression of the VEGF receptor Flk1, driven by Fli1 and Gata2. Scl activation requires synergy between this VEGFA-controlled pathway and a VEGFA-independent pathway controlled by Fli1, Gata2 and Etv2/Etsrp/ER71, which also drives expression of the Scl partner Lmo2. Thus, the two ETS factors Fli1 and Etv6, which drives the VEGFA expression in both somites and the DLP, sit at the top of the adult haemangioblast gene regulatory network (GRN). Furthermore, Gata2 is initially activated by Fli1 but later maintained by another ETS factor, Etv2. We also establish that Flk1 and Etv2 act independently in the two pathways to Scl activation. Thus, detailed temporal, epistatic measurements of key TFs and VEGFA plus its receptor have enabled us to build a Xenopus adult haemangioblast GRN.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Hemangioblastos/citología , Proteínas Proto-Oncogénicas/metabolismo , Factores de Transcripción/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/metabolismo , Animales , Western Blotting , Linaje de la Célula , Clonación Molecular , Proteínas de Unión al ADN/genética , Embrión no Mamífero/efectos de los fármacos , Embrión no Mamífero/metabolismo , Factor de Transcripción GATA2/genética , Factor de Transcripción GATA2/metabolismo , Redes Reguladoras de Genes , Hemangioblastos/metabolismo , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/metabolismo , Morfolinos/administración & dosificación , Morfolinos/farmacología , Proteína Proto-Oncogénica c-fli-1/genética , Proteína Proto-Oncogénica c-fli-1/metabolismo , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas c-ets/genética , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo , Transducción de Señal , Somitos/citología , Somitos/metabolismo , Factores de Transcripción/genética , Activación Transcripcional , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Xenopus/genética , Xenopus laevis/sangre , Proteína ETS de Variante de Translocación 6
2.
Proc Natl Acad Sci U S A ; 110(29): 11893-8, 2013 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-23818617

RESUMEN

The mechanisms by which arterial fate is established and maintained are not clearly understood. Although a number of signaling pathways and transcriptional regulators have been implicated in arterio-venous differentiation, none are essential for arterial formation, and the manner in which widely expressed factors may achieve arterial-specific gene regulation is unclear. Using both mouse and zebrafish models, we demonstrate here that arterial specification is regulated combinatorially by Notch signaling and SoxF transcription factors, via direct transcriptional gene activation. Through the identification and characterization of two arterial endothelial cell-specific gene enhancers for the Notch ligand Delta-like ligand 4 (Dll4), we show that arterial Dll4 expression requires the direct binding of both the RBPJ/Notch intracellular domain and SOXF transcription factors. Specific combinatorial, but not individual, loss of SOXF and RBPJ DNA binding ablates all Dll4 enhancer-transgene expression despite the presence of multiple functional ETS binding sites, as does knockdown of sox7;sox18 in combination with loss of Notch signaling. Furthermore, triple knockdown of sox7, sox18 and rbpj also results in ablation of endogenous dll4 expression. Fascinatingly, this combinatorial ablation leads to a loss of arterial markers and the absence of a detectable dorsal aorta, demonstrating the essential roles of SoxF and Notch, together, in the acquisition of arterial identity.


Asunto(s)
Arterias/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteína de Unión a la Señal Recombinante J de las Inmunoglobulinas/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Receptores Notch/metabolismo , Factores de Transcripción SOXF/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Arterias/metabolismo , Proteínas de Unión al Calcio , Inmunoprecipitación de Cromatina , Clonación Molecular , Ensayo de Cambio de Movilidad Electroforética , Técnicas de Silenciamiento del Gen , Inmunohistoquímica , Hibridación in Situ , Ratones , Ratones Transgénicos , Pez Cebra
3.
Nat Commun ; 10(1): 3577, 2019 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-31395869

RESUMEN

Haematopoietic stem cells are generated from the haemogenic endothelium (HE) located in the floor of the dorsal aorta (DA). Despite being integral to arteries, it is controversial whether HE and arterial endothelium share a common lineage. Here, we present a transgenic zebrafish runx1 reporter line to isolate HE and aortic roof endothelium (ARE)s, excluding non-aortic endothelium. Transcriptomic analysis of these populations identifies Runx1-regulated genes and shows that HE initially expresses arterial markers at similar levels to ARE. Furthermore, runx1 expression depends on prior arterial programming by the Notch ligand dll4. Runx1-/- mutants fail to downregulate arterial genes in the HE, which remains integrated within the DA, suggesting that Runx1 represses the pre-existing arterial programme in HE to allow progression towards the haematopoietic fate. These findings strongly suggest that, in zebrafish, aortic endothelium is a precursor to HE, with potential implications for pluripotent stem cell differentiation protocols for the generation of transplantable HSCs.


Asunto(s)
Arterias/embriología , Endotelio Vascular/embriología , Hemangioblastos/fisiología , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Arterias/citología , Arterias/metabolismo , Linaje de la Célula , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Embrión no Mamífero , Desarrollo Embrionario , Endotelio Vascular/citología , Endotelio Vascular/metabolismo , Técnicas de Inactivación de Genes , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
4.
Dev Cell ; 38(4): 358-70, 2016 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-27499523

RESUMEN

Hematopoietic stem cells (HSCs) are self-renewing multipotent stem cells that generate mature blood lineages throughout life. They, together with hematopoietic progenitor cells (collectively known as HSPCs), emerge from hemogenic endothelium in the floor of the embryonic dorsal aorta by an endothelial-to-hematopoietic transition (EHT). Here we demonstrate that transforming growth factor ß (TGFß) is required for HSPC specification and that it regulates the expression of the Notch ligand Jagged1a in endothelial cells prior to EHT, in a striking parallel with the epithelial-to-mesenchymal transition (EMT). The requirement for TGFß is two fold and sequential: autocrine via Tgfß1a and Tgfß1b produced in the endothelial cells themselves, followed by a paracrine input of Tgfß3 from the notochord, suggesting that the former programs the hemogenic endothelium and the latter drives EHT. Our findings have important implications for the generation of HSPCs from pluripotent cells in vitro.


Asunto(s)
Endotelio Vascular/embriología , Células Madre Hematopoyéticas/citología , Factor de Crecimiento Transformador beta1/metabolismo , Factor de Crecimiento Transformador beta2/metabolismo , Factor de Crecimiento Transformador beta3/metabolismo , Pez Cebra/embriología , Animales , Animales Modificados Genéticamente , Diferenciación Celular , Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Transición Epitelial-Mesenquimal , Proteína Jagged-1/biosíntesis , Proteína Jagged-1/genética , Morfolinos/genética , Células Madre Multipotentes/citología , Notocorda/embriología , Transducción de Señal , Factor de Crecimiento Transformador beta1/genética , Factor de Crecimiento Transformador beta2/genética , Factor de Crecimiento Transformador beta3/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/genética , Proteínas de Pez Cebra/metabolismo
5.
Gene Expr Patterns ; 4(1): 85-92, 2004 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-14678833

RESUMEN

Basic helix-loop-helix (bHLH) transcription factors play key roles in the development of the central nervous system. Here we report the isolation of a zebrafish gene that encodes a homologue of the mammalian bHLH transcription factor, Tal2. In zebrafish embryos, tal2, like its mammalian homologue, is strongly expressed in the diencephalon and the mesencephalon, with the latter expression located in post-mitotic cells of the tectum. However, in addition to this conserved brain expression, we also detect expression in the floor plate of the spinal cord. By the location of this expression relative to other genes expressed in the floor plate and by analysing expression in a selection of midline mutants, we reveal that tal2 is expressed within the lateral floor plate as opposed to the medial floor plate, and also in more dorsal cells which are distinct from motorneurons and depend on either sonic hedgehog signalling or a signal coming from the lateral floor plate. This is to our knowledge the first report of a gene expressed specifically in lateral cells of the floor plate in the spinal cord.


Asunto(s)
Médula Espinal/metabolismo , Factores de Transcripción/genética , Proteínas de Pez Cebra/genética , Pez Cebra/genética , Secuencia de Aminoácidos , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Embrión no Mamífero/metabolismo , Desarrollo Embrionario , Perfilación de la Expresión Génica , Regulación del Desarrollo de la Expresión Génica , Marcadores Genéticos , Hibridación in Situ , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido , Médula Espinal/embriología , Factores de Tiempo , Pez Cebra/embriología
6.
Dev Cell ; 24(2): 144-58, 2013 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-23318133

RESUMEN

VEGFA signaling is critical for endothelial and hematopoietic stem cell (HSC) specification. However, blood defects resulting from perturbation of the VEGFA pathway are always accompanied by impaired vascular/arterial development. Because HSCs derive from arterial cells, it is unclear whether VEGFA directly contributes to HSC specification. This is an important question for our understanding of how HSCs are formed and for developing their production in vitro. Through knockdown of the regulator ETO2 in embryogenesis, we report a specific decrease in expression of medium/long Vegfa isoforms in somites. This leads to absence of Notch1 expression and failure of HSC specification in the dorsal aorta (DA), independently of vessel formation and arterial specification. Vegfa hypomorphs and isoform-specific (medium/long) morphants not only recapitulate this phenotype but also demonstrate that VEGFA short isoform is sufficient for DA development. Therefore, sequential, isoform-specific VEGFA signaling successively induces the endothelial, arterial, and HSC programs in the DA.


Asunto(s)
Aorta/embriología , Arterias/embriología , Proteínas Co-Represoras/metabolismo , Hematopoyesis , Células Madre Hematopoyéticas/citología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/embriología , Animales , Aorta/metabolismo , Arterias/metabolismo , Proteínas Co-Represoras/genética , Desarrollo Embrionario , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Morfolinos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Isoformas de Proteínas/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Transducción de Señal , Factores de Transcripción , Transcripción Genética , Proteínas de Xenopus/genética , Xenopus laevis/genética , Xenopus laevis/crecimiento & desarrollo , Xenopus laevis/metabolismo
7.
Dev Cell ; 18(4): 569-78, 2010 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-20412772

RESUMEN

The regulation of stem cell ontogeny is poorly understood. We show that the leukemia-associated Ets transcription factor, Tel1/ETV6, specifies the first hematopoietic stem cells (HSCs) in the dorsal aorta (DA). In contrast, Tel1/ETV6 has little effect on embryonic blood formation, further distinguishing the programming of the long- and short-term blood populations. Consistent with the notion of concordance of arterial and HSC programs, we show that Tel1/ETV6 is also required for the specification of the DA as an artery. We further show that Tel1/ETV6 acts by regulating the transcription of VegfA in both the lateral plate mesoderm and also in the somites. Exogenous VEGFA rescues Tel1/ETV6 morphants, and depletion of VEGFA or its receptor, Flk1, largely phenocopies Tel1/ETV6 depletion. Few such links between intrinsic and extrinsic programming of stem cells have been reported previously. Our data place Tel1/ETV6 at the apex of the genetic regulatory cascade leading to HSC production.


Asunto(s)
Células Sanguíneas/citología , Regulación del Desarrollo de la Expresión Génica , Células Madre Hematopoyéticas/citología , Proteínas Proto-Oncogénicas c-ets/fisiología , Proteínas Represoras/fisiología , Factor A de Crecimiento Endotelial Vascular/metabolismo , Hemangioblastos/metabolismo , Humanos , Hibridación in Situ , Mesodermo/metabolismo , Modelos Biológicos , Modelos Genéticos , Datos de Secuencia Molecular , Fenotipo , Transducción de Señal , Somitos/metabolismo , Transcripción Genética , Proteína ETS de Variante de Translocación 6
8.
J Biol Chem ; 277(38): 35183-90, 2002 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-12077125

RESUMEN

Triplet repeats that cause human genetic diseases have been shown to exhibit unusual compact structures in DNA, and in this paper we show that similar structures exist in shorter "normal length" CNG RNA. CUG and control RNAs were made chemically and by in vitro transcription. We find that "normal" short CUG RNAs migrate anomalously fast on non-denaturing gels, compared with control oligos of similar base composition. By contrast, longer tracts approaching clinically relevant lengths appear to form higher order structures. The CD spectrum of shorter tracts is similar to triplex and pseudoknot nucleic acid structures and different from classical hairpin spectra. A model is outlined that enables the base stacking features of poly(r(G-C))(2).poly(r(U)) or poly(d(G-C))(2).poly(d(T)) triplexes to be achieved, even by a single 15-mer.


Asunto(s)
Enfermedades Genéticas Congénitas/genética , ARN/genética , Repeticiones de Trinucleótidos , Secuencia de Bases , Dicroismo Circular , Cartilla de ADN , Humanos , Modelos Moleculares , Conformación de Ácido Nucleico , Plásmidos , ARN/química , Transcripción Genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda