Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Ann Neurol ; 2024 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-39073169

RESUMEN

OBJECTIVE: Intellectual disability is often the outcome of neurodevelopmental disorders and is characterized by significant impairments in intellectual and adaptive functioning. X-linked intellectual disability (XLID) is a subset of these disorders caused by genetic defects on the X chromosome, affecting about 2 out of 1,000 males. In syndromic form, it leads to a broad range of cognitive, behavioral, ocular, and physical disabilities. METHODS: Employing exome or genome sequencing, here we identified 4 missense variants (c.475C > G; p.H159D, c.1373C > A; p.T458N, and c.1585G > A; p.E529K, c.953C > T; p.S318L) and a putative truncating variant (c.1413_1414del; p.Y471*) in the SRPK3 gene in 9 XLID patients from 5 unrelated families. To validate SRPK3 as a novel XLID gene, we established a knockout (KO) model of the SRPK3 orthologue in zebrafish. RESULTS: The 8 patients ascertained postnatally shared common clinical features including intellectual disability, agenesis of the corpus callosum, abnormal eye movement, and ataxia. A ninth case, ascertained prenatally, had a complex structural brain phenotype. Together, these data indicate a pathological role of SRPK3 in neurodevelopmental disorders. In post-fertilization day 5 larvae (free swimming stage), KO zebrafish exhibited severe deficits in eye movement and swim bladder inflation, mimicking uncontrolled ocular movement and physical clumsiness observed in human patients. In adult KO zebrafish, cerebellar agenesis and behavioral abnormalities were observed, recapitulating human phenotypes of cerebellar atrophy and intellectual disability. INTERPRETATION: Overall, these results suggest a crucial role of SRPK3 in the pathogenesis of syndromic X-linked intellectual disability and provide new insights into brain development, cognitive and ocular dysfunction in both humans and zebrafish. ANN NEUROL 2024.

2.
Am J Hum Genet ; 108(7): 1330-1341, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34102099

RESUMEN

Adaptor protein (AP) complexes mediate selective intracellular vesicular trafficking and polarized localization of somatodendritic proteins in neurons. Disease-causing alleles of various subunits of AP complexes have been implicated in several heritable human disorders, including intellectual disabilities (IDs). Here, we report two bi-allelic (c.737C>A [p.Pro246His] and c.1105A>G [p.Met369Val]) and eight de novo heterozygous variants (c.44G>A [p.Arg15Gln], c.103C>T [p.Arg35Trp], c.104G>A [p.Arg35Gln], c.229delC [p.Gln77Lys∗11], c.399_400del [p.Glu133Aspfs∗37], c.747G>T [p.Gln249His], c.928-2A>C [p.?], and c.2459C>G [p.Pro820Arg]) in AP1G1, encoding gamma-1 subunit of adaptor-related protein complex 1 (AP1γ1), associated with a neurodevelopmental disorder (NDD) characterized by mild to severe ID, epilepsy, and developmental delay in eleven families from different ethnicities. The AP1γ1-mediated adaptor complex is essential for the formation of clathrin-coated intracellular vesicles. In silico analysis and 3D protein modeling simulation predicted alteration of AP1γ1 protein folding for missense variants, which was consistent with the observed altered AP1γ1 levels in heterologous cells. Functional studies of the recessively inherited missense variants revealed no apparent impact on the interaction of AP1γ1 with other subunits of the AP-1 complex but rather showed to affect the endosome recycling pathway. Knocking out ap1g1 in zebrafish leads to severe morphological defect and lethality, which was significantly rescued by injection of wild-type AP1G1 mRNA and not by transcripts encoding the missense variants. Furthermore, microinjection of mRNAs with de novo missense variants in wild-type zebrafish resulted in severe developmental abnormalities and increased lethality. We conclude that de novo and bi-allelic variants in AP1G1 are associated with neurodevelopmental disorder in diverse populations.


Asunto(s)
Complejo 1 de Proteína Adaptadora/genética , Discapacidades del Desarrollo/genética , Epilepsia/genética , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Alelos , Animales , Análisis Mutacional de ADN , Femenino , Células HEK293 , Humanos , Masculino , Linaje , Ratas , Pez Cebra/genética
3.
Epilepsia ; 65(3): 779-791, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38088023

RESUMEN

OBJECTIVE: Epilepsy with eyelid myoclonia (EEM) spectrum is a generalized form of epilepsy characterized by eyelid myoclonia with or without absences, eye closure-induced seizures with electroencephalographic paroxysms, and photosensitivity. Based on the specific clinical features, age at onset, and familial occurrence, a genetic cause has been postulated. Pathogenic variants in CHD2, SYNGAP1, NEXMIF, RORB, and GABRA1 have been reported in individuals with photosensitivity and eyelid myoclonia, but whether other genes are also involved, or a single gene is uniquely linked with EEM, or its subtypes, is not yet known. We aimed to dissect the genetic etiology of EEM. METHODS: We studied a cohort of 105 individuals by using whole exome sequencing. Individuals were divided into two groups: EEM- (isolated EEM) and EEM+ (EEM accompanied by intellectual disability [ID] or any other neurodevelopmental/psychiatric disorder). RESULTS: We identified nine variants classified as pathogenic/likely pathogenic in the entire cohort (8.57%); among these, eight (five in CHD2, one in NEXMIF, one in SYNGAP1, and one in TRIM8) were found in the EEM+ subcohort (28.57%). Only one variant (IFIH1) was found in the EEM- subcohort (1.29%); however, because the phenotype of the proband did not fit with published data, additional evidence is needed before considering IFIH1 variants and EEM- an established association. Burden analysis did not identify any single burdened gene or gene set. SIGNIFICANCE: Our results suggest that for EEM, as for many other epilepsies, the identification of a genetic cause is more likely with comorbid ID and/or other neurodevelopmental disorders. Pathogenic variants were mostly found in CHD2, and the association of CHD2 with EEM+ can now be considered a reasonable gene-disease association. We provide further evidence to strengthen the association of EEM+ with NEXMIF and SYNGAP1. Possible new associations between EEM+ and TRIM8, and EEM- and IFIH1, are also reported. Although we provide robust evidence for gene variants associated with EEM+, the core genetic etiology of EEM- remains to be elucidated.


Asunto(s)
Epilepsia Generalizada , Epilepsia Refleja , Mioclonía , Humanos , Secuenciación del Exoma , Helicasa Inducida por Interferón IFIH1/genética , Epilepsia Refleja/genética , Electroencefalografía , Párpados , Proteínas Portadoras/genética , Proteínas del Tejido Nervioso/genética
4.
J Med Genet ; 60(12): 1224-1234, 2023 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-37586838

RESUMEN

BACKGROUND: KBG syndrome is caused by haploinsufficiency of ANKRD11 and is characterised by macrodontia of upper central incisors, distinctive facial features, short stature, skeletal anomalies, developmental delay, brain malformations and seizures. The central nervous system (CNS) and skeletal features remain poorly defined. METHODS: CNS and/or skeletal imaging were collected from molecularly confirmed individuals with KBG syndrome through an international network. We evaluated the original imaging and compared our results with data in the literature. RESULTS: We identified 53 individuals, 44 with CNS and 40 with skeletal imaging. Common CNS findings included incomplete hippocampal inversion and posterior fossa malformations; these were significantly more common than previously reported (63.4% and 65.9% vs 1.1% and 24.7%, respectively). Additional features included patulous internal auditory canal, never described before in KBG syndrome, and the recurrence of ventriculomegaly, encephalic cysts, empty sella and low-lying conus medullaris. We found no correlation between these structural anomalies and epilepsy or intellectual disability. Prevalent skeletal findings comprised abnormalities of the spine including scoliosis, coccygeal anomalies and cervical ribs. Hand X-rays revealed frequent abnormalities of carpal bone morphology and maturation, including a greater delay in ossification compared with metacarpal/phalanx bones. CONCLUSION: This cohort enabled us to describe the prevalence of very heterogeneous neuroradiological and skeletal anomalies in KBG syndrome. Knowledge of the spectrum of such anomalies will aid diagnostic accuracy, improve patient care and provide a reference for future research on the effects of ANKRD11 variants in skeletal and brain development.


Asunto(s)
Anomalías Múltiples , Enfermedades del Desarrollo Óseo , Discapacidad Intelectual , Anomalías Dentarias , Humanos , Discapacidad Intelectual/diagnóstico , Discapacidad Intelectual/genética , Anomalías Múltiples/diagnóstico , Anomalías Múltiples/genética , Enfermedades del Desarrollo Óseo/diagnóstico por imagen , Enfermedades del Desarrollo Óseo/genética , Anomalías Dentarias/diagnóstico por imagen , Anomalías Dentarias/genética , Facies , Fenotipo , Proteínas Represoras/genética , Factores de Transcripción , Neuroimagen
5.
Ann Neurol ; 92(5): 895-901, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35947102

RESUMEN

NOTCH1 belongs to the NOTCH family of proteins that regulate cell fate and inflammatory responses. Somatic and germline NOTCH1 variants have been implicated in cancer, Adams-Oliver syndrome, and cardiovascular defects. We describe 7 unrelated patients grouped by the presence of leukoencephalopathy with calcifications and heterozygous de novo gain-of-function variants in NOTCH1. Immunologic profiling showed upregulated CSF IP-10, a cytokine secreted downstream of NOTCH1 signaling. Autopsy revealed extensive leukoencephalopathy and microangiopathy with vascular calcifications. This evidence implicates that heterozygous gain-of-function variants in NOTCH1 lead to a chronic central nervous system (CNS) inflammatory response resulting in a calcifying microangiopathy with leukoencephalopathy. ANN NEUROL 2022;92:895-901.


Asunto(s)
Displasia Ectodérmica , Leucoencefalopatías , Humanos , Receptor Notch1/genética , Receptor Notch1/metabolismo , Quimiocina CXCL10 , Sistema Nervioso Central/metabolismo
6.
Haematologica ; 108(7): 1909-1919, 2023 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-36519321

RESUMEN

Inherited thrombocytopenias (IT) are genetic diseases characterized by low platelet count, sometimes associated with congenital defects or a predisposition to develop additional conditions. Next-generation sequencing has substantially improved our knowledge of IT, with more than 40 genes identified so far, but obtaining a molecular diagnosis remains a challenge especially for patients with non-syndromic forms, having no clinical or functional phenotypes that raise suspicion about specific genes. We performed exome sequencing (ES) in a cohort of 116 IT patients (89 families), still undiagnosed after a previously validated phenotype-driven diagnostic algorithm including a targeted analysis of suspected genes. ES achieved a diagnostic yield of 36%, with a gain of 16% over the diagnostic algorithm. This can be explained by genetic heterogeneity and unspecific genotype-phenotype relationships that make the simultaneous analysis of all the genes, enabled by ES, the most reasonable strategy. Furthermore, ES disentangled situations that had been puzzling because of atypical inheritance, sex-related effects or false negative laboratory results. Finally, ES-based copy number variant analysis disclosed an unexpectedly high prevalence of RUNX1 deletions, predisposing to hematologic malignancies. Our findings demonstrate that ES, including copy number variant analysis, can substantially contribute to the diagnosis of IT and can solve diagnostic problems that would otherwise remain a challenge.


Asunto(s)
Pruebas Genéticas , Trombocitopenia , Humanos , Secuenciación del Exoma , Fenotipo , Pruebas Genéticas/métodos , Genotipo , Trombocitopenia/diagnóstico , Trombocitopenia/genética
7.
Brain ; 145(7): 2313-2331, 2022 07 29.
Artículo en Inglés | MEDLINE | ID: mdl-35786744

RESUMEN

Epilepsy is one of the most frequent neurological diseases, with focal epilepsy accounting for the largest number of cases. The genetic alterations involved in focal epilepsy are far from being fully elucidated. Here, we show that defective lipid signalling caused by heterozygous ultra-rare variants in PIK3C2B, encoding for the class II phosphatidylinositol 3-kinase PI3K-C2ß, underlie focal epilepsy in humans. We demonstrate that patients' variants act as loss-of-function alleles, leading to impaired synthesis of the rare signalling lipid phosphatidylinositol 3,4-bisphosphate, resulting in mTORC1 hyperactivation. In vivo, mutant Pik3c2b alleles caused dose-dependent neuronal hyperexcitability and increased seizure susceptibility, indicating haploinsufficiency as a key driver of disease. Moreover, acute mTORC1 inhibition in mutant mice prevented experimentally induced seizures, providing a potential therapeutic option for a selective group of patients with focal epilepsy. Our findings reveal an unexpected role for class II PI3K-mediated lipid signalling in regulating mTORC1-dependent neuronal excitability in mice and humans.


Asunto(s)
Fosfatidilinositol 3-Quinasas Clase II , Epilepsias Parciales , Animales , Fosfatidilinositol 3-Quinasas Clase II/genética , Epilepsias Parciales/genética , Humanos , Lípidos , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Mutación/genética , Fosfatidilinositol 3-Quinasas/genética , Convulsiones
8.
J Med Genet ; 59(2): 170-179, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-33323470

RESUMEN

INTRODUCTION: The Tousled-like kinases 1 and 2 (TLK1 and TLK2) are involved in many fundamental processes, including DNA replication, cell cycle checkpoint recovery and chromatin remodelling. Mutations in TLK2 were recently associated with 'Mental Retardation Autosomal Dominant 57' (MRD57, MIM# 618050), a neurodevelopmental disorder characterised by a highly variable phenotype, including mild-to-moderate intellectual disability, behavioural abnormalities, facial dysmorphisms, microcephaly, epilepsy and skeletal anomalies. METHODS: We re-evaluate whole exome sequencing and array-CGH data from a large cohort of patients affected by neurodevelopmental disorders. Using spatial proteomics (BioID) and single-cell gel electrophoresis, we investigated the proximity interaction landscape of TLK2 and analysed the effects of p.(Asp551Gly) and a previously reported missense variant (c.1850C>T; p.(Ser617Leu)) on TLK2 interactions, localisation and activity. RESULTS: We identified three new unrelated MRD57 families. Two were sporadic and caused by a missense change (c.1652A>G; p.(Asp551Gly)) or a 39 kb deletion encompassing TLK2, and one was familial with three affected siblings who inherited a nonsense change from an affected mother (c.1423G>T; p.(Glu475Ter)). The clinical phenotypes were consistent with those of previously reported cases. The tested mutations strongly impaired TLK2 kinase activity. Proximal interactions between TLK2 and other factors implicated in neurological disorders, including CHD7, CHD8, BRD4 and NACC1, were identified. Finally, we demonstrated a more relaxed chromatin state in lymphoblastoid cells harbouring the p.(Asp551Gly) variant compared with control cells, conferring susceptibility to DNA damage. CONCLUSION: Our study identified novel TLK2 pathogenic variants, confirming and further expanding the MRD57-related phenotype. The molecular characterisation of missense variants increases our knowledge about TLK2 function and provides new insights into its role in neurodevelopmental disorders.


Asunto(s)
Cromatina/metabolismo , Trastornos del Neurodesarrollo/genética , Proteínas Quinasas/genética , Adolescente , Adulto , Niño , Preescolar , Estudios de Cohortes , Análisis Mutacional de ADN , Femenino , Humanos , Masculino , Metaboloma , Persona de Mediana Edad , Mutación , Mutación Missense , Trastornos del Neurodesarrollo/enzimología , Linaje , Mapeo de Interacción de Proteínas , Proteínas Quinasas/metabolismo , Secuenciación del Exoma , Adulto Joven
9.
Hum Mol Genet ; 29(9): 1489-1497, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32307552

RESUMEN

Despite the wide use of genomics to investigate the molecular basis of rare congenital malformations, a significant fraction of patients remains bereft of diagnosis. As part of our continuous effort to recruit and perform genomic and functional studies on such cohorts, we investigated the genetic and mechanistic cause of disease in two independent consanguineous families affected by overlapping craniofacial, cardiac, laterality and neurodevelopmental anomalies. Using whole exome sequencing, we identified homozygous frameshift CCDC32 variants in three affected individuals. Functional analysis in a zebrafish model revealed that ccdc32 depletion recapitulates the human phenotypes. Because some of the patient phenotypes overlap defects common to ciliopathies, we asked if loss of CCDC32 might contribute to the dysfunction of this organelle. Consistent with this hypothesis, we show that ccdc32 is required for normal cilia formation in zebrafish embryos and mammalian cell culture, arguing that ciliary defects are at least partially involved in the pathomechanism of this disorder.


Asunto(s)
Ciliopatías/genética , Anomalías Congénitas/genética , Cardiopatías Congénitas/genética , Trastornos del Neurodesarrollo/genética , Animales , Sistemas CRISPR-Cas/genética , Cilios/genética , Cilios/patología , Ciliopatías/complicaciones , Ciliopatías/patología , Anomalías Congénitas/patología , Anomalías Craneofaciales/complicaciones , Anomalías Craneofaciales/genética , Anomalías Craneofaciales/patología , Exoma/genética , Femenino , Cardiopatías Congénitas/complicaciones , Cardiopatías Congénitas/patología , Homocigoto , Humanos , Mutación con Pérdida de Función/genética , Masculino , Trastornos del Neurodesarrollo/complicaciones , Trastornos del Neurodesarrollo/patología , Linaje , Fenotipo , Secuenciación del Exoma , Pez Cebra/genética
10.
Am J Hum Genet ; 104(2): 246-259, 2019 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-30661772

RESUMEN

SOX4, together with SOX11 and SOX12, forms group C of SRY-related (SOX) transcription factors. They play key roles, often in redundancy, in multiple developmental pathways, including neurogenesis and skeletogenesis. De novo SOX11 heterozygous mutations have been shown to cause intellectual disability, growth deficiency, and dysmorphic features compatible with mild Coffin-Siris syndrome. Using trio-based exome sequencing, we here identify de novo SOX4 heterozygous missense variants in four children who share developmental delay, intellectual disability, and mild facial and digital morphological abnormalities. SOX4 is highly expressed in areas of active neurogenesis in human fetuses, and sox4 knockdown in Xenopus embryos diminishes brain and whole-body size. The SOX4 variants cluster in the highly conserved, SOX family-specific HMG domain, but each alters a different residue. In silico tools predict that each variant affects a distinct structural feature of this DNA-binding domain, and functional assays demonstrate that these SOX4 proteins carrying these variants are unable to bind DNA in vitro and transactivate SOX reporter genes in cultured cells. These variants are not found in the gnomAD database of individuals with presumably normal development, but 12 other SOX4 HMG-domain missense variants are recorded and all demonstrate partial to full activity in the reporter assay. Taken together, these findings point to specific SOX4 HMG-domain missense variants as the cause of a characteristic human neurodevelopmental disorder associated with mild facial and digital dysmorphism.


Asunto(s)
Anomalías Múltiples/genética , Mutación Missense/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción SOXC/genética , Secuencia de Aminoácidos , Animales , Niño , Preescolar , Síndrome de Coffin-Lowry/genética , Estudios de Cohortes , Secuencia Conservada , ADN/genética , ADN/metabolismo , Femenino , Dominios HMG-Box/genética , Heterocigoto , Humanos , Masculino , Factores de Transcripción SOX/química , Factores de Transcripción SOX/genética , Factores de Transcripción SOXC/química , Factores de Transcripción SOXC/metabolismo , Activación Transcripcional , Xenopus/anatomía & histología , Xenopus/embriología , Xenopus/genética , Proteínas de Xenopus/química , Proteínas de Xenopus/genética
11.
Am J Hum Genet ; 105(5): 987-995, 2019 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-31587868

RESUMEN

NKAP is a ubiquitously expressed nucleoplasmic protein that is currently known as a transcriptional regulatory molecule via its interaction with HDAC3 and spliceosomal proteins. Here, we report a disorder of transcriptional regulation due to missense mutations in the X chromosome gene, NKAP. These mutations are clustered in the C-terminal region of NKAP where NKAP interacts with HDAC3 and post-catalytic spliceosomal complex proteins. Consistent with a role for the C-terminal region of NKAP in embryogenesis, nkap mutant zebrafish with a C-terminally truncated NKAP demonstrate severe developmental defects. The clinical features of affected individuals are highly conserved and include developmental delay, hypotonia, joint contractures, behavioral abnormalities, Marfanoid habitus, and scoliosis. In affected cases, transcriptome analysis revealed the presence of a unique transcriptome signature, which is characterized by the downregulation of long genes with higher exon numbers. These observations indicate the critical role of NKAP in transcriptional regulation and demonstrate that perturbations of the C-terminal region lead to developmental defects in both humans and zebrafish.


Asunto(s)
Disfunción Cognitiva/genética , Mutación Missense/genética , Proteínas Represoras/genética , Transcripción Genética/genética , Secuencia de Aminoácidos , Animales , Regulación hacia Abajo/genética , Exones/genética , Regulación de la Expresión Génica/genética , Genes Ligados a X/genética , Histona Desacetilasas/genética , Humanos , Alineación de Secuencia , Transcriptoma/genética , Pez Cebra/genética
12.
Am J Hum Genet ; 105(4): 689-705, 2019 10 03.
Artículo en Inglés | MEDLINE | ID: mdl-31495489

RESUMEN

Sphingomyelinases generate ceramide from sphingomyelin as a second messenger in intracellular signaling pathways involved in cell proliferation, differentiation, or apoptosis. Children from 12 unrelated families presented with microcephaly, simplified gyral pattern of the cortex, hypomyelination, cerebellar hypoplasia, congenital arthrogryposis, and early fetal/postnatal demise. Genomic analysis revealed bi-allelic loss-of-function variants in SMPD4, coding for the neutral sphingomyelinase-3 (nSMase-3/SMPD4). Overexpression of human Myc-tagged SMPD4 showed localization both to the outer nuclear envelope and the ER and additionally revealed interactions with several nuclear pore complex proteins by proteomics analysis. Fibroblasts from affected individuals showed ER cisternae abnormalities, suspected for increased autophagy, and were more susceptible to apoptosis under stress conditions, while treatment with siSMPD4 caused delayed cell cycle progression. Our data show that SMPD4 links homeostasis of membrane sphingolipids to cell fate by regulating the cross-talk between the ER and the outer nuclear envelope, while its loss reveals a pathogenic mechanism in microcephaly.


Asunto(s)
Artrogriposis/genética , Microcefalia/genética , Trastornos del Neurodesarrollo/genética , Esfingomielina Fosfodiesterasa/genética , Artrogriposis/patología , Linaje de la Célula , Niño , Retículo Endoplásmico/metabolismo , Femenino , Perfilación de la Expresión Génica , Células HEK293 , Humanos , Masculino , Microcefalia/patología , Mitosis , Trastornos del Neurodesarrollo/patología , Linaje , Empalme del ARN
13.
Bioinformatics ; 37(5): 723-725, 2021 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-32805025

RESUMEN

MOTIVATION: Next-generation sequencing is increasingly adopted in the clinical practice largely thanks to concurrent advancements in bioinformatic tools for variant detection and annotation. However, the need to assess sequencing quality at the base-pair level still poses challenges for diagnostic accuracy. One of the most popular quality parameters is the percentage of targeted bases characterized by low depth of coverage (DoC). These regions potentially 'hide' clinically relevant variants, but no annotation is usually returned with them. However, visualizing low-DoC data with their potential functional and clinical consequences may be useful to prioritize inspection of specific regions before re-sequencing all coverage gaps or making assertions about completeness of the diagnostic test. To meet this need, we have developed unCOVERApp, an interactive application for graphical inspection and clinical annotation of low-DoC genomic regions containing genes. RESULTS: unCOVERApp interactive plots allow to display gene sequence coverage down to the base-pair level, and functional and clinical annotations of sites below a user-defined DoC threshold can be downloaded in a user-friendly spreadsheet format. Moreover, unCOVERApp provides a simple statistical framework to evaluate if DoC is sufficient for the detection of somatic variants. A maximum credible allele frequency calculator is also available allowing users to set allele frequency cut-offs based on assumptions about the genetic architecture of the disease. In conclusion, unCOVERApp is an original tool designed to identify sites of potential clinical interest that may be 'hidden' in diagnostic sequencing data. AVAILABILITYAND IMPLEMENTATION: unCOVERApp is a free application developed with Shiny packages and available in GitHub (https://github.com/Manuelaio/uncoverappLib). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Programas Informáticos , Genoma , Genómica
14.
Genet Med ; 24(9): 1952-1966, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35916866

RESUMEN

PURPOSE: ZMYND8 encodes a multidomain protein that serves as a central interactive hub for coordinating critical roles in transcription regulation, chromatin remodeling, regulation of super-enhancers, DNA damage response and tumor suppression. We delineate a novel neurocognitive disorder caused by variants in the ZMYND8 gene. METHODS: An international collaboration, exome sequencing, molecular modeling, yeast two-hybrid assays, analysis of available transcriptomic data and a knockdown Drosophila model were used to characterize the ZMYND8 variants. RESULTS: ZMYND8 variants were identified in 11 unrelated individuals; 10 occurred de novo and one suspected de novo; 2 were truncating, 9 were missense, of which one was recurrent. The disorder is characterized by intellectual disability with variable cardiovascular, ophthalmologic and minor skeletal anomalies. Missense variants in the PWWP domain of ZMYND8 abolish the interaction with Drebrin and missense variants in the MYND domain disrupt the interaction with GATAD2A. ZMYND8 is broadly expressed across cell types in all brain regions and shows highest expression in the early stages of brain development. Neuronal knockdown of the DrosophilaZMYND8 ortholog results in decreased habituation learning, consistent with a role in cognitive function. CONCLUSION: We present genomic and functional evidence for disruption of ZMYND8 as a novel etiology of syndromic intellectual disability.


Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Encéfalo/metabolismo , Regulación de la Expresión Génica , Humanos , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Trastornos del Neurodesarrollo/metabolismo , Dominios Proteicos , Secuenciación del Exoma
15.
Int J Mol Sci ; 23(21)2022 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-36361767

RESUMEN

The advent of Whole Genome Sequencing (WGS) broadened the genetic variation detection range, revealing the presence of variants even in non-coding regions of the genome, which would have been missed using targeted approaches. One of the most challenging issues in WGS analysis regards the interpretation of annotated variants. This review focuses on tools suitable for the functional annotation of variants falling into non-coding regions. It couples the description of non-coding genomic areas with the results and performance of existing tools for a functional interpretation of the effect of variants in these regions. Tools were tested in a controlled genomic scenario, representing the ground-truth and allowing us to determine software performance.


Asunto(s)
Genómica , Programas Informáticos , Humanos , Genómica/métodos , Secuenciación Completa del Genoma/métodos , Genoma , Genoma Humano
16.
Am J Hum Genet ; 102(1): 116-132, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29290337

RESUMEN

Whole-exome and targeted sequencing of 13 individuals from 10 unrelated families with overlapping clinical manifestations identified loss-of-function and missense variants in KIAA1109 allowing delineation of an autosomal-recessive multi-system syndrome, which we suggest to name Alkuraya-Kucinskas syndrome (MIM 617822). Shared phenotypic features representing the cardinal characteristics of this syndrome combine brain atrophy with clubfoot and arthrogryposis. Affected individuals present with cerebral parenchymal underdevelopment, ranging from major cerebral parenchymal thinning with lissencephalic aspect to moderate parenchymal rarefaction, severe to mild ventriculomegaly, cerebellar hypoplasia with brainstem dysgenesis, and cardiac and ophthalmologic anomalies, such as microphthalmia and cataract. Severe loss-of-function cases were incompatible with life, whereas those individuals with milder missense variants presented with severe global developmental delay, syndactyly of 2nd and 3rd toes, and severe muscle hypotonia resulting in incapacity to stand without support. Consistent with a causative role for KIAA1109 loss-of-function/hypomorphic variants in this syndrome, knockdowns of the zebrafish orthologous gene resulted in embryos with hydrocephaly and abnormally curved notochords and overall body shape, whereas published knockouts of the fruit fly and mouse orthologous genes resulted in lethality or severe neurological defects reminiscent of the probands' features.


Asunto(s)
Artrogriposis/genética , Encéfalo/embriología , Mutación/genética , Proteínas/genética , Adolescente , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Niño , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Masculino , Linaje , Pez Cebra , Proteínas de Pez Cebra/genética
17.
Blood ; 133(12): 1346-1357, 2019 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-30591527

RESUMEN

Inherited thrombocytopenias (ITs) are a heterogeneous group of disorders characterized by low platelet count that may result in bleeding tendency. Despite progress being made in defining the genetic causes of ITs, nearly 50% of patients with familial thrombocytopenia are affected with forms of unknown origin. Here, through exome sequencing of 2 siblings with autosomal-recessive thrombocytopenia, we identified biallelic loss-of-function variants in PTPRJ . This gene encodes for a receptor-like PTP, PTPRJ (or CD148), which is expressed abundantly in platelets and megakaryocytes. Consistent with the predicted effects of the variants, both probands have an almost complete loss of PTPRJ at the messenger RNA and protein levels. To investigate the pathogenic role of PTPRJ deficiency in hematopoiesis in vivo, we carried out CRISPR/Cas9-mediated ablation of ptprja (the ortholog of human PTPRJ) in zebrafish, which induced a significantly decreased number of CD41+ thrombocytes in vivo. Moreover, megakaryocytes of our patients showed impaired maturation and profound defects in SDF1-driven migration and formation of proplatelets in vitro. Silencing of PTPRJ in a human megakaryocytic cell line reproduced the functional defects observed in patients' megakaryocytes. The disorder caused by PTPRJ mutations presented as a nonsyndromic thrombocytopenia characterized by spontaneous bleeding, small-sized platelets, and impaired platelet responses to the GPVI agonists collagen and convulxin. These platelet functional defects could be attributed to reduced activation of Src family kinases. Taken together, our data identify a new form of IT and highlight a hitherto unknown fundamental role for PTPRJ in platelet biogenesis.


Asunto(s)
Plaquetas/patología , Predisposición Genética a la Enfermedad , Megacariocitos/patología , Mutación , Trombocitopenia/patología , Adolescente , Adulto , Animales , Plaquetas/metabolismo , Sistemas CRISPR-Cas , Niño , Femenino , Estudios de Seguimiento , Hematopoyesis , Humanos , Masculino , Megacariocitos/metabolismo , Persona de Mediana Edad , Linaje , Pronóstico , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/antagonistas & inhibidores , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Trombocitopenia/etiología , Trombocitopenia/genética , Pez Cebra
18.
Am J Med Genet A ; 185(6): 1712-1720, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33675273

RESUMEN

De novo variants in the WDR26 gene leading to haploinsufficiency have recently been associated with Skraban-Deardorff syndrome. This condition is an ultra-rare autosomal dominant neurodevelopmental disorder characterized by a broad range of clinical signs, including intellectual disability (ID), developmental delay (DD), seizures, abnormal facial features, feeding difficulties, and minor skeletal anomalies. Currently, 18 cases have been reported in the literature and for only 15 of them a clinical description is available. Here, we describe a child with Skraban-Deardorff syndrome associated with the WDR26 pathogenic de novo variant NM_025160.6:c.69dupC, p.(Gly24ArgfsTer48), and an adult associated with the pathogenic de novo variant c.1076G > A, p.(Trp359Ter). The adult patient was a 29-year-old female with detailed information on clinical history and pharmacological treatments since birth, providing an opportunity to map disease progression and patient management. By comparing our cases with published reports of Skraban-Deardorff syndrome, we provide a genetic and clinical summary of this ultrarare condition, describe the clinical management from childhood to adult age, and further expand on the clinical phenotype.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Predisposición Genética a la Enfermedad , Discapacidad Intelectual/genética , Trastornos del Neurodesarrollo/genética , Adulto , Niño , Preescolar , Deleción Cromosómica , Femenino , Haploinsuficiencia/genética , Humanos , Discapacidad Intelectual/patología , Masculino , Mutación , Trastornos del Neurodesarrollo/patología , Fenotipo
19.
Brain ; 143(8): 2380-2387, 2020 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-32658972

RESUMEN

The SLC12 gene family consists of SLC12A1-SLC12A9, encoding electroneutral cation-coupled chloride co-transporters. SCL12A2 has been shown to play a role in corticogenesis and therefore represents a strong candidate neurodevelopmental disorder gene. Through trio exome sequencing we identified de novo mutations in SLC12A2 in six children with neurodevelopmental disorders. All had developmental delay or intellectual disability ranging from mild to severe. Two had sensorineural deafness. We also identified SLC12A2 variants in three individuals with non-syndromic bilateral sensorineural hearing loss and vestibular areflexia. The SLC12A2 de novo mutation rate was demonstrated to be significantly elevated in the deciphering developmental disorders cohort. All tested variants were shown to reduce co-transporter function in Xenopus laevis oocytes. Analysis of SLC12A2 expression in foetal brain at 16-18 weeks post-conception revealed high expression in radial glial cells, compatible with a role in neurogenesis. Gene co-expression analysis in cells robustly expressing SLC12A2 at 16-18 weeks post-conception identified a transcriptomic programme associated with active neurogenesis. We identify SLC12A2 de novo mutations as the cause of a novel neurodevelopmental disorder and bilateral non-syndromic sensorineural hearing loss and provide further data supporting a role for this gene in human neurodevelopment.


Asunto(s)
Vestibulopatía Bilateral/genética , Pérdida Auditiva Sensorineural/genética , Trastornos del Neurodesarrollo/genética , Miembro 2 de la Familia de Transportadores de Soluto 12/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Humanos , Lactante , Masculino , Mutación , Adulto Joven
20.
Hum Genet ; 139(11): 1429-1441, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32488467

RESUMEN

Autozygosity-driven exome analysis has been shown effective for identification of genes underlying recessive diseases especially in countries of the so-called Greater Middle East (GME), where high consanguinity unravels the phenotypic effects of recessive alleles and large family sizes facilitate homozygosity mapping. In Italy, as in most European countries, consanguinity is estimated low. Nonetheless, consanguineous Italian families are not uncommon in publications of genetic findings and are often key to new associations of genes with rare diseases. We collected 52 patients from 47 consanguineous families with suspected recessive diseases, 29 originated in GME countries and 18 of Italian descent. We performed autozygosity-driven exome analysis by detecting long runs of homozygosity (ROHs > 1.5 Mb) and by prioritizing candidate clinical variants within. We identified a pathogenic synonymous variant that had been previously missed in NARS2 and we increased an initial high diagnostic rate (47%) to 55% by matchmaking our candidate genes and including in the analysis shorter ROHs that may also happen to be autozygous. GME and Italian families contributed to diagnostic yield comparably. We found no significant difference either in the extension of the autozygous genome, or in the distribution of candidate clinical variants between GME and Italian families, while we showed that the average autozygous genome was larger and the mean number of candidate clinical variants was significantly higher (p = 0.003) in mutation-positive than in mutation-negative individuals, suggesting that these features influence the likelihood that the disease is autozygosity-related. We highlight the utility of autozygosity-driven genomic analysis also in countries and/or communities, where consanguinity is not widespread cultural tradition.


Asunto(s)
Pruebas Genéticas/métodos , Genoma Humano/genética , Mapeo Cromosómico/métodos , Consanguinidad , Exoma/genética , Familia , Femenino , Genes Recesivos/genética , Humanos , Italia , Masculino , Medio Oriente , Mutación/genética , Linaje
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda